哥氏方程具有如下形式:
其中, 是向量
在惯性坐标系
下变化速度,
是向量
在旋转坐标系
下变化速度,
是旋转坐标系
相对惯性坐标系
的旋转角速度。
1、哥氏方程的一般意义
在任意一个坐标系中(惯性系或非惯性系均可),向量 在
时间后有如下变化:
向量 与起点位置无关。为了得到与哥氏方程一致的推导,我们将
分解成由旋转导致的
与由空间运动导致的
(事实上,我们可以将
分解成纯旋转和沿
方向的长度变化,但此时旋转角速度对应为旋转坐标系角速度与
在旋转系中的角速度之和)。我们的目标是推导
。因为旋转角
很小,可认为
与
垂直,所以:
即:
只要满足在同一个坐标系下,上式对任意向量(可以是位移,速度等)均成立。
2、对应到哥氏方程
我们取惯性系 ,记上述方程为:
(这里有下标和无下标其实是一样的)
如果我们把 固连于某一旋转系统
之上,
相对
的旋转角速度
。
旋转将带动
旋转相同的角度,即
。
对应
相对
的变化,记作
(把
看作静止时,
的变化)。
此时:
即:
上式仍然对任意向量(可以是位移,速度等)成立。
3、加速度合成定理
取 为相对惯性系的位移,则不妨将:
记作:
上式即速度合成定理, 为绝对速度,
为相对速度,
为牵连速度(注意:这里下标
表示相对速度)。
再取 为
,则:
记作:
此即加速度合成定理,其中: