哥氏方程的数学推导与加速度合成定理

哥氏方程具有如下形式:

                                   

其中, 是向量  在惯性坐标系  下变化速度, 是向量  在旋转坐标系  下变化速度, 是旋转坐标系  相对惯性坐标系  的旋转角速度。

 

1、哥氏方程的一般意义

在任意一个坐标系中(惯性系或非惯性系均可),向量  在  时间后有如下变化:

向量  与起点位置无关。为了得到与哥氏方程一致的推导,我们将  分解成由旋转导致的  与由空间运动导致的  (事实上,我们可以将  分解成纯旋转和沿  方向的长度变化,但此时旋转角速度对应为旋转坐标系角速度与  在旋转系中的角速度之和)。我们的目标是推导  。因为旋转角  很小,可认为   垂直,所以:

                                 

即:

                                                   

只要满足在同一个坐标系下,上式对任意向量(可以是位移,速度等)均成立。

 

2、对应到哥氏方程

我们取惯性系  ,记上述方程为:

                                                 

                                       (这里有下标和无下标其实是一样的)

如果我们把  固连于某一旋转系统  之上, 相对  的旋转角速度  旋转将带动  旋转相同的角度,即  。  对应  相对  的变化,记作 (把  看作静止时, 的变化)。

此时:

                                                            

                                                            

即:

                                                 

上式仍然对任意向量(可以是位移,速度等)成立。

 

3、加速度合成定理

 为相对惯性系的位移,则不妨将:

                                                

记作:

                                                      

上式即速度合成定理, 为绝对速度, 为相对速度, 为牵连速度(注意:这里下标  表示相对速度)。

再取   ,则:

          

                     

                     

记作:

                                              

此即加速度合成定理,其中:

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值