Sentaurus TCAD的sdevice求解中选择Math求解方法

并行迭代线性求解器(ILS)

并行、迭代线性求解器。可定制、高精度,并且对所有问题都有良好的并行性能。

  • MultipleRHS
    • 解决具有多个右侧项(right-hand sides)的线性系统(仅用于交流分析)。
  • Set=
    • 使用来自集合 <int> 的 ILS 选项。

并行超节点直接求解器(ParDiSo)

并行、超节点直接求解器。具有高精度和良好的并行性能,适用于小型和中型问题。

  • IterativeRefinement
    • 执行最多两次迭代精炼步骤以提高解的精度。
  • MultipleRHS
    • 解决具有多个右侧项(right-hand sides)的线性系统(仅用于交流分析)。
  • NonsymmetricPermutation
    • 计算初始的非对称矩阵置换和缩放,将较大的矩阵条目放置在对角线上。
  • RecomputeNonsymmetricPermutation
    • 在每次因子分解之前重新计算非对称矩阵的置换和缩放。

超节点直接求解器(Super)

超节点直接求解器。对小型问题具有最佳精度,但未并行化。


详细解释

1. 并行迭代线性求解器(ILS)
  • 并行性:支持并行处理,适用于大规模并行计算环境。

  • 迭代性:使用迭代方法求解线性系统。

  • 可定制性:可以根据具体需求调整求解器选项。

  • 高精度:提供高精度的求解结果。

  • 适用范围:适用于所有类型的问题。

  • MultipleRHS

    • 支持解决具有多个右侧项的线性系统,特别适用于交流分析(AC analysis)。
  • Set=

    • 使用来自指定集合 <int> 的 ILS 选项。
2. 并行超节点直接求解器(ParDiSo)
  • 并行性:支持并行处理,适用于分布式内存系统。

  • 超节点技术:使用超节点技术提高求解效率。

  • 高精度:提供高精度的求解结果。

  • 适用范围:适用于小型和中型问题。

  • IterativeRefinement

    • 执行最多两次迭代精炼步骤,以提高解的精度。
  • MultipleRHS

    • 支持解决具有多个右侧项的线性系统,特别适用于交流分析(AC analysis)。
  • NonsymmetricPermutation

    • 计算初始的非对称矩阵置换和缩放,以优化求解过程。
  • RecomputeNonsymmetricPermutation

    • 在每次因子分解之前重新计算非对称矩阵的置换和缩放,以适应不同的问题结构。
3. 超节点直接求解器(Super)
  • 超节点技术:使用超节点技术提高求解效率。
  • 最佳精度:对小型问题提供最佳精度。
  • 适用范围:适用于小型问题,但未并行化。

通过这些线性求解器的选择和配置,可以针对不同类型的问题和计算环境,实现高效的线性系统求解。
在这里插入图片描述

使用块分解求解器进行耦合(Blocked)

在这里插入图片描述

线性求解器

Math 参数用于求解算法,并且是设备独立的,必须出现在基础的 Math 部分。这些参数可以根据求解器类型进行分组。线性求解器的控制参数为 Method 和 SubMethod。关键字 Method 用于选择要使用的线性求解器,而关键字 SubMethod 用于选择块分解方法的内部方法。关键字 ACMethod 和 ACSubMethod 用于确定交流分析(AC analysis)中使用的线性求解器。

注意
ACMethod=Blocked 是 ACMethod 的唯一有效选择。但是,任何可用的线性求解器都可以被选作 ACSubMethod。

第 1512 页表 216 列出了线性求解器 PARDISO 的可用选项。这些选项在求解器指定之后用括号括起来:

Method = ParDiSo (NonsymmetricPermutation IterativeRefinement)

默认选项 NonsymmetricPermutation、IterativeRefinement 和 RecomputeNonsymmetricPermutation 提供了速度和精度之间的最佳折衷。为了提高速度,可以选择-NonsymmetricPermutation。为了提高精度,以牺牲速度为代价,激活 IterativeRefinement 或 RecomputeNonsymmetricPermutation,或者同时激活两者。

所有 ILS 选项都可以在全局 Math 部分内的 ILSrc 语句中指定:

Math {
    ILSrc = "
    set (...) {
        iterative (...);
        preconditioning (...);
        ordering (...);
    }; options (...);
    ...
    "
    ...
}

参见第 1512 页表 216 获取更多 ILS 选项。

线性求解器 PARDISO 和 ILS 支持 MultipleRHS 选项来解决具有多个右侧项(right-hand sides)的线性系统。这个选项仅适用于交流分析(AC analysis)。如果选择此选项,ILS 可能会产生小幅度的并行加速或略微更准确的结果。

使用 Math 选项 PrintLinearSolver 可以获取有关正在使用的线性求解器的附加信息。

通过这些参数的合理设置,可以优化线性求解器的性能,提高计算效率和求解质量。
在这里插入图片描述
以下是关于MPBC(Multi-Physics Boundary Conditions)专用线性求解器的描述翻译成中文:


用于MPBC的专用线性求解器

在使用迭代线性求解器(如ILS)与Mortar周期边界条件(mortar periodic boundary conditions,MPBC)结合时,可能会遇到一些收敛性问题。如果可行,使用直接求解器(如PARDISO)应该可以解决这些问题。否则,改进预调节器或使用扩展精度通常也能在很多情况下改善收敛行为。

对于MPBC模拟,有一个专用的线性求解器可用于利用迭代求解器ILS的优势,并提高模拟的鲁棒性。此求解器可以通过(临时的)用户界面启用。在全局Math部分指定UseSchurSolver会用专用的MPBC求解器替换所有Coupled语句中的Blocked方法。使用其他方法的Coupled语句不受影响。请注意,此求解器目前还不适用于交流分析(AC analysis)。

导数

对于大多数问题,使用全导数可以使牛顿迭代收敛得最好。此外,对于小信号分析、噪声和波动分析,使用全导数是必需的。因此,默认情况下,Sentaurus Device 会考虑全导数。在极少数情况下,省略导数可以显著改善收敛性或性能,此时可以使用全局 Math 部分中的关键字 -AvalDerivatives-Derivatives 来关闭迁移率和雪崩效应的导数。

导数通常是通过解析方式计算的,但也可以通过指定 Numerically 使用数值方法计算。这种方法不适用于 Blocked 方法,并且通常不建议使用。

来源:Sentaurus™ Device User Guide Version R-2020.09, September 2020

### 使用 Sentaurus TCAD 对 LT LDMOS 进行仿真的设置与参数调整 #### 1. 工程创建与工具配置 在使用 Sentaurus TCAD 对 LT LDMOS 器件进行仿真之前,需先建立一个新的工程并选择合适的工具组合。通常情况下,LT LDMOS 的仿真涉及以下几个方面: - **SProcess**:用于模拟制造工艺过程中的扩散、氧化等步骤。 - **SDevice**:用于分析器件的电学性能及其物理特性。 根据已有资料[^2],可以通过以下方式完成初始配置: - 新建一个项目,并添加 SProcess 和 SDevice 工具到工作流中。 - 配置好输入文件路径以及输出目录位置以便后续查看仿真结果。 #### 2. 几何结构设计 (Geometry Design) 利用 `SDE` 或者直接通过脚本定义 LT LDMOS 的三维几何模型。这一步骤非常重要因为它决定了最终得到的结果是否能够反映真实世界里的情况。对于低温度(Low Temperature, LT)LDMOS 来说,其特殊之处在于采用了较低沉积温度下的外延生长技术来形成源漏区域以及其他重要组成部分。因此,在构建几何形状时应特别注意这些细节特征尺寸比例关系等方面的要求。 以下是简单的 Python 脚本来展示如何用编程方法生成基本矩形框作为起点: ```python import tdmscript as tdm def create_ltdmos_geometry(): # 创建新文档 doc = tdm.newDocument() # 定义材料属性 silicon_layer = tdm.Material("Silicon", thickness=10e-6) # 绘制衬底层 substrate = tdm.Rectangle(-50e-6, -50e-6, 50e-6, 50e-6).setMaterial(silicon_layer) # 添加其他必要组件... pass create_ltdmos_geometry() ``` #### 3. 物理模型设定 (Physical Model Setup) 针对 BJT 瞬态温升问题提到过的 RHS 不收敛现象同样可能发生在 LDMOS 上下文中如果求解器参数不当的话。所以这里建议参照之前的解决办法适当修改 math 设置部分以提高稳定性: ```plaintext Math { Extrapolate Yes RelErrControl No Digits 8 ErrRef(electron) = 1.0E+19 ErrRef(hole) = 1.0E+19 Iterations 50 NotDamped 30 Transient TR Method Newton } ``` 上述代码片段展示了更稳健的一些选项比如增加迭代次数至50次允许更多尝试找到解决方案;改变瞬态积分方案为梯形法则(TR),这种方法相比向后欧拉法(BE)往往能提供更好的数值行为尤其当系统存在快速变化信号成分时更是如此等等改进措施均有助于缓解先前遇到的那种类型的发散难题[^1]. 另外还需要考虑加入热传导方程式以便准确捕捉由于功率耗散引起的局部升温效应这对于评估长期可靠性至关重要. #### 4. 边界条件施加 (Boundary Conditions Application) 为了获得有意义的结果必须合理指定边界条件其中包括但不限于电压电流源加载形式空间分布状况时间演变规律等内容。例如可以在栅极端口应用脉冲波形测试开关速度表现;而在漏极则给予固定直流偏压考察击穿特性曲线走势等情况均可依据实际需求灵活定制相应策略实现全面深入剖析目标对象的各项指标参数水平达到预期目的为止结束整个流程直至满足精度要求为止才可认为完成了全部任务环节的工作量统计汇总报告撰写提交审核批准发布实施等一系列标准化作业程序执行完毕之后才算真正意义上结束了本次专题研究课题探索之旅途上迈出坚实步伐走向光明未来前景广阔无限美好憧憬之中去吧朋友们加油干起来啊! ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Eren-Yu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值