波动率曲面套利

文章探讨了隐含波动率曲面的建模方法,包括参数法(如多项式模型和VAR模型)、波动率微笑模型(如局部波动率和Heston模型),以及如何通过观察市场动态进行动态建模。还分析了波动率曲面的偏度和峰度特点,以及如何利用这些特征进行套利策略。
摘要由CSDN通过智能技术生成

隐含波动率曲面建模技术

隐含波动率曲面可以清晰地揭示隐含波动率行权价(或期权价值程度)和合约期限之间的数量关系

交割结构(波动率微笑-尖峰肥尾)+期限结构

参数法

首先建立隐含波动率的参数模型,然后通过优化方法获得模型的最优估计参数,基于最优估计参数重构整个隐含波动率曲面,这个过程也称之为模型参数校准(Calibration)。

参数法建模中使用的模型主要包括两类:一类是隐含波动率的参数模型、另一类是波动率微笑模型。

隐含波动率参数模型

确定性隐含波动率模型,仍然是在BS模型上进行拓展,即维持BS公式中的主要风险源**标的价格S、行权价K、剩余期限T(**无风险利率r对波动率的影响偏小,不作为主要风险源),根据不同规则,隐含波动率只与这其中的某些变量存在确定性规律,因而此类模型被称为隐含波动率曲面静态模型。

隐含波动率参数模型直接假设隐含波动率的具体函数形式,如:多项式参数模型等。

但是,这类模型存在几方面的缺陷:
一是模型假设主要基于市场经验,缺乏定价理论支持,不易应用于复杂期权定价;
二是该类方法本身无法保证基本的无套利条件成立,需要额外增加约束条件,增加了参数模型估计难度:
三是随着市场特征发生变化,该类模型存在模型设定风险

总结模型

三种常用的确定性变动规则分别为 Derman(1999)提出的粘性行权价规则(StickyStrikeRule)。粘性 delta规则(Sticky Delta Rule)和 Daglish。Hull and Suo(2007)提出的平稳时间平方根规则(Stationary Square Root of Time Rule)。(假设隐含波动率服从对数正态分布)

我们用的是非对称二元多项式,其是在粘性行权价基础上,修改了方程关于在值程度的对称性,引入了收益率项,增加了方程的非线性。

  • 粘性行权价规则,隐含波动率只与行权价剩余期限有关
    在这里插入图片描述
  • 粘性 delta 规则,隐含波动率是跟随行权价剩余期限标的价格变化而变化的
    在这里插入图片描述在这里插入图片描述
  • 平稳时间平方根规则,假设隐含波动率是**由m和t的特定函数形式m/sqrt(T)**决定的,
    在这里插入图片描述

波动率微笑模型

该类模型是对 Black-Scholes模型进行改进,假设资产价格的波动率为变量,在此框架下进行期权定价,进而推演出隐含波动率曲面。

这类模型具体包括:局部波动率模型、Heston随机波动率模型(Heston,1993)

波动率微笑模型的优势在于建立了较严谨的定价理论,能够保证无套利条件成立,可以支持复杂期权定价。

但这类模型也存在缺陷:
一是计算过程通常较复杂,可能存在较大参数估计误差
二是需要建立关于资产价格的参数假设,但现实世界可能与参数假设存在偏差,从而导致模型风险。

随机波动率模型

随机波动率模型是一类假设标的资产波动率服从某一随机过程的模型,基于随机波动率模型构建隐含波动率曲面的方法在实际中使用的非常广泛。随机波动率模型的期权定价公式是在风险中性测度下基于无风险定价理论推出的,基于这类模型得到的隐含波动率曲面具有无套利的性质。

非参数法

不直接设定隐含波动率的参数模型,而是基于离散(不完整)的市场数据,应用非参数统计理论中的插值法(Imterpolation)、平滑法(Smoothing)等技术手段,估计完整的隐含波动率曲面。

非参数方法的优势在于灵活性高,可以适应各种复杂形态的隐含波动率曲面建模,降低了模型设定风险。

非参数方法存在的问题:
一是定价理论支持不足,模型应用受限;
二是无法保证基本无套利条件成立;
三是对于期限较长或者价内外程度较深的期权,由于样本数量稀少且流动性不足,非参数法在隐含波动率曲面的边界区域通常难以给出较理想的估计结果

隐含波动率曲面动态建模

前文已对隐含波动率曲面的静态化建模进行大致梳理,但是通过对市场进行观察可以很容易就发现。期权的波动率曲面都是会随着时间变化的,对其进行静态化建模其实只是从理论上进行简化。

动态模型建模方法,是建立在静态参数化因子模型的基础上,对参数化因子的时间序列进行间接的建模

该类模型的本质其实就是利用各种参数(或者因子)对隐含波动率进行降维,然后通过研究参数的实变特征对波动率曲面的动态变化进行一个间接化的研究,一般这一类模型又被称为半参数化模型。

步骤

第一步首先回归拟合每天隐含波动率的横截面数据。第一步与静态模型类似,在对隐含波动率横截面模型进行比较之后,选定相对更适用隐含波动率横截面模型,对样本期内的每一天都进行隐含波动率曲面拟合,获取每一天的参数

然后输入用拟合得到的参数估计值的时间序列数据,基于此对参数的时间序列模型进行估计。第二步就是根据选取的时间序列模型对每天的参数因子进行建模,本文选用时间序列向量白回归模型(VAR模型)来刻画参数因子的时变性。VAR模型的核心思想是:将系统中每一个内生变量看作是系统中所有内生变量的滞后值的函数,并进行模型的构建,这样的话就可以把单变量自回归模型推广到由多元时间序列变量组成的“向量”自回归模型。

波动率面的特点

偏度

  • 1)标的资产对数收益率分布函数并非对称函数,而是具有一定的左偏性质,即出现大幅负向收益的概率高于出现大幅正向收益的概率
    2)不同执行价格期权隐含波动率曲线具有向左上倾斜的形态,即隐含波动率曲线具有一定的偏度。实际上,标的资产收益率的左偏特性是隐含波动率曲线产生偏度的重要原因:相比于大幅上涨,标的资产更容易出现大幅下跌,所以投资者对对冲大幅下行风险的需求更高,从而 OTM 看跌期权会具有一定的溢价,这种溢价体现为低执行价格期权隐含波动率较高,即曲线向左上倾斜。

峰度

  • 峰度指的是标的资产收益率具有肥尾的特征:相比于正态分布函数,收益率的分布更容易出现极端值,所以保护大幅下行风险和博取大幅上行收益的需求会有所提升,表现为 OTM 看跌期权和 OTM 看涨期权会出现溢价,隐含波动率高于 ATM 期权,从而不同执行价格的隐含波动率曲线是一条“微笑曲线”

波动率曲面套利

波动率曲面 对于某个标的资产,市场上所有到期时间和执行价格的隐含波动率构成了期权的隐含波动率曲面

利用不同执行价格和到期时间期权隐含波动率的相对偏离获取收益,理想情况下波动率曲面具有特定的偏度结构和期限结构,市场隐波与理论结构偏离时可以构建相应套利组合实现收益。

  • 如果波动率曲面局部出现异常的起伏,特定执行价格和到期时间的期权相对于其他合约参数的期权被高估或者低估,此时可以利用他们相对价格的偏离来进行套利,这是波动率曲面套利的基本思想。

  • 核心思路:每期将市场波动率曲面与最优模型波动率曲面对比,从而确定套利组合

  • 核心优势:收益稳定、风险分散

波动率曲面模型

  • 标的资产建模
  • 隐含波动率运动过程建模
  • 直接拟合隐含波动率曲面

套利

构建好波动率曲面作为参照之后我们可以判断期权隐含波动率的相对高低进而确定套利组合,按照套利组合的构建方式我们可以将曲面套利细分为三种:

  • 偏度套利,寻找偏度曲线的异常起伏,使用同一到期时间的期权构建组合;
  • 期限套利,寻找隐含波动率期限结构的局部异常,使用给定执行价格期权(一般是平值期权)构建套利组合;
  • 曲面套利,如果局部没有合适的偏度套利或期限套利品种组合或组合中的某些品种缺乏流动性,则可以进行曲面套利,使用执行价格和到期时间均不同的品种构建套利组合

期权套利策略操作框架

构建曲面——利用市场数据构建每一期市场波动率曲面;

  • 构建曲面核心难点:控制曲面的稳定性
  • 这种不稳定性主要来源于两个方面:期权价格数据的不稳定性和模型拟合的不稳定性

数据:流动性较好的期权合约主要是平值附近的合约,对于深度虚值的合约短时间内成交量很低
模型拟合:参数的拟合涉及多个参数的数值优化,求解过程中可能会收敛得到局部最优解或者得到远偏离参数自身含义的解

  • 加入参数取值范围限制。首先,我们根据参数的实际金融学含义设定最大波动范围,参数取值将被限定在最大波动范围内
  • 将经过上述步骤得到的模型参数组合时间序列做指数移动平均

执行套利交易——将模型波动率曲面与市场波动率曲面对比,构建套利组合,同时对冲 Delta、Vega 等希腊字母,并在合适的条件下平仓

  1. 构建套利组合
  2. 动态 Delta 对冲
  3. 计算组合资金占用
  4. 计算每期期权盈利,检查平仓条件
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值