基于多模态脑机接口的智能小车自动驾驶系统

本文提出一种结合脑电信号、眼电信号和陀螺仪信号的多模态脑机接口智能小车自动驾驶系统,提高了控制准确率和响应速度。系统融合计算机视觉技术,增加自动驾驶功能,10名受试者平均准确率达到92.47%,平均信息传递速率55.94 bit/min,证明了其有效性和效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘 要: 在传统的控制系统当中, 人们依赖于使用手柄、操纵杆等设备来与外部设备实现人机交互, 这对于具有运动障碍的患者来说是具有挑战的. 而脑机接口(BCI) 技术可通过脑环将脑电信号转化为对外界设备的控制命令, 使这些患者可以由大脑“意识”直接控制外部设备. 本文提出一种基于多模态脑机接口的智能小车自动驾驶系统, 该系统融合了受试者的脑电信号、眼电信号和陀螺仪信号3 种模态的信号来控制小车. 其中, 脑电信号用于控制小车的速度, 眼电信号用于控制小车的启停, 陀螺仪信号则用于控制小车的转向功能. 此外, 我们还融合了计算机视觉技术, 为智能小车增加了自动驾驶功能, 使得控制更加智能化. 经过实验表明, 10 名受试者使用该系统控制小车的平均准确率达到了92.47%, 平均响应时间为1.55 s, 平均信息传递速率达到了55.94 bit/min, 从而说明该控制系统是
有效且高效的. 此外, 为了验证小车的自动驾驶功能, 我们设置了多个对比实验进行验证. 实验结果表明, 与手动驾驶相比, 虽然该自动驾驶系统在操控小车的速度上存在劣势, 但是在准确率与稳定性上具有更好的性能优势. 证明该系统可以为残障人士带来更好的操控体验, 在脑控应用和自动驾驶领域具有广阔的应用前景.
关键词: 多模态; 脑机接口; 脑环; 智能小车; 自动驾驶

1 背景及现状分析

1.1 研究背景

在传统的控制系统当中, 人们依赖于传统的操控设备如遥杆来控制外部设备, 但这种方法对于残疾人
是极具困难的. 脑机接口(BCI) 技术可通过脑环将脑电信号转化为对外界设备的控制命令, 帮助思维正常却无法通过语言或肢体动作表达的人来与外界交流.

1.2 应用背景

通过研究脑机接口系统操控车辆, 能够帮助残疾人利用脑电信号, 实现脑控车辆, 提高自身的移动速度; 同时, 有助于构建以人为本的智能辅助驾驶系统, 提高普通驾驶员的驾驶能力, 保障驾驶安全[1]. 或者使用脑电信号中的注意力特征, 通过脑控小车的方式来锻炼使用者的注意力水平, 可以在教育娱乐领域有广泛的应用.

1.3 研究现状

近年来, 基于脑

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

电气_空空

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值