👨🎓个人主页
💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
本应讲解在对话语音处理应用中使用的自适应差分脉冲编码调制(ADPCM)的实现
包括以下内容:
•语音数据文件的文件格式
•ADPCM编码算法
•ADPCM解码算法
•步长确定
•初始和重置条件。
图1显示了ADPCM编码过程的框图。将线性输入样本X(n)与该输入X(n-l)的先前估计进行比较。差值d(n)以及当前步长ss(n)被提供给编码器逻辑。如下所述,该逻辑产生ADPCM输出样本。该输出样本还用于更新步长计算ss(n+l),并提供给解码器以计算输入样本的线性估计。
编码器接受来自比较器的差值d(n)和步长,并计算4位ADPCM码。以下是此计算的伪代码表示:
let B3 = B2 = B1 = B0 = 0
if (d(n) < 0)
then B3 = 1
d(n) = ABS(d(n))
if (d(n) >= ss(n))
then B2 = 1 and d(n) = d(n) - ss(n)
if (d(n) >= ss(n) / 2)
then B1 = 1 and d(n) = d(n) - ss(n) / 2
if (d(n) >= ss(n) / 4)
then B0 = 1
L(n) = (10002 * B3) + (1002 * B2) + (102 * B1) + B0
基于自适应差分脉冲编码调制(ADPCM)的实现研究
1. 基本原理与技术特点
自适应差分脉冲编码调制(ADPCM)是一种结合差分编码与自适应量化的波形编码技术,旨在降低数据量同时保持语音质量。其核心思想包括:
- 差分编码:利用语音信号的样值相关性,仅对实际信号与预测值的差值进行编码。由于差值动态范围远小于原始信号,可实现低比特率编码(如4位/样本)。
- 自适应量化:根据差值信号的统计特性动态调整量化步长。小差值使用小步长以保留细节,大差值使用大步长以减少过载失真。
- 预测器设计:采用前向或后向自适应预测器,通过历史样本预测当前值,最小化预测误差。前向自适应需传输边信息,后向自适应则通过量化输出自动调整。
技术特点:
- 压缩效率:典型压缩比为1:4(如16位PCM→4位ADPCM),适用于32 kbps及更低速率的通信场景。
- 低复杂度:编解码算法简单,延迟短(约0.125 ms),适合实时处理。
- 自适应能力:量化器和预测器均支持动态调整,可适应信号的非平稳特性。
2. 关键算法与实现框架
实现框架示例(IMA ADPCM):
- 编码器:输入16位PCM,输出4位ADPCM流,状态变量包括当前预测值和步长索引。
- 解码器:输入4位ADPCM流,输出16位PCM,需维护与编码器相同的步长和预测状态。
3. 实现中的常见问题与解决方案
-
量化噪声累积:
- 问题:步长调整滞后导致高频细节丢失,产生粗糙音质。
- 解决:采用音节自适应(如每10-20 ms调整步长)或混合自适应(结合瞬时与长时统计)。
-
溢出处理:
- 预测值溢出:限制预测值在16位有符号范围(-32768~32767)。
- 步长索引越界:强制索引在0-88之间,防止查表错误。
-
编解码同步:
- 问题:信道误码或初始状态不一致导致解码偏移。
- 解决:传输初始状态信息(如前几个样本的PCM值)或使用后向自适应避免边信息依赖。
-
硬件资源限制:
- 优化策略:简化预测器阶数(如从10阶降至4阶),牺牲少量SNR换取计算效率。
- FPGA实现:利用查找表固化步长调整逻辑,减少实时计算量。
4. 性能对比与标准应用
4.1 算法性能评估
- 信噪比(SNR) :标准ADPCM(G.726)在32 kbps下SNR约35 dB,改进算法如算法-2可提升2.3 dB。
- 抗误码能力:Lattice预测器在10⁻³误码率下优于CVSD,但需牺牲约20%计算资源。
4.2 主要标准与变体
标准 | 码率(kbps) | 应用场景 | 特点 |
---|---|---|---|
G.721 | 32 | 电话语音 | 首个ITU-T标准,兼容PCM |
G.726 | 16-40 | DCME、卫星通信 | 支持动态码率切换 |
IMA ADPCM | 16-64 | 游戏音频、嵌入式系统 | 开源实现,无专利限制 |
MS ADPCM | 32 | Windows系统提示音 | 固定块头结构,易于文件存储 |
4.3 与其他编码技术对比
技术 | 压缩比 | 延迟 | 音质 | 适用场景 |
---|---|---|---|---|
PCM | 1:1 | 无 | 无损 | 高保真录音 |
MP3 | 10:1 | 50 ms | 接近CD | 音乐流媒体 |
CVSD | 2:1 | 极低 | 中等 | 军事通信、抗强噪声环境 |
ADPCM | 4:1 | <1 ms | 电话级 | 实时通信、嵌入式存储 |
5. 现有研究进展与专利
- 算法改进:如算法-2通过多级预测器组合降低失真,适用于9.6 kbps QAM信号。
- 硬件优化:Microchip的ADPCM实现占用仅45% FPGA资源,适合便携设备。
- 专利技术:
- CN112512591 B:基于PSMA的ADPCM药物偶联物(医疗领域跨界应用)。
- EP3873460 B1:改进的步长调整逻辑,提升低码率下的语音清晰度。
6. 结论与展望
ADPCM凭借其低复杂度与实时性,在语音通信、嵌入式音频存储等领域仍具不可替代性。未来研究方向包括:
- 深度学习融合:利用神经网络优化预测器,减少量化噪声。
- 跨标准兼容:统一IMA、MS等变体的解码框架(如FFmpeg插件化支持)。
- 量子化编码:探索基于量子比特的非均匀量化,突破传统4位限制。
通过持续优化算法与硬件适配,ADPCM有望在物联网、边缘计算等新兴场景中焕发新生。
📚2 运行结果
部分代码:
function [out,B0,B1,B2,B3] = encoder(x)
%ADPCM Encoder.
% Args:
% x: An audio file with the format as Microsoft WAVE ".wav".
%
% Returns:
% out: A row matrix containing the quantified and encoded decimal stream transformed from the
% encoded binary bit stream, with the ADPCM encoded.
% B0: A row matrix containing the lowest order of each output(out) in binary format.
% B1: A row matrix containing the second low order of each output(out) in binary format.
% B2: A row matrix containing the second high order of each output(out) in binary format.
% B3: A row matrix containing the highest order of each output(out) in binary format.
%
%
%Finished by Qiushi Yang, 6/12/2018.
Ml_values_table = [-1,-1,-1,-1,2,4,6,8];
step_sizes_table = [16,17,19,21,23,25,28,31,34,37,41,45,50,55,60,66,73,80,88,97,107,118,130,143,157,173,190,209,230,253,279,307,337,371,408,449,494,544,598,658,724,796,876,963,1060,1166,1282,1411,1552];
ss = step_sizes_table;
% Initialization
index = 0;
pre_data = 0;
B0=zeros(size(x));
B1=zeros(size(x));
B2=zeros(size(x));
B3=zeros(size(x));
% L=0;
out = zeros(size(x));
for i = 1:length(x),
current_data = x(i); % input current data
diff = current_data - pre_data; % calculate data-increment
% Calculate the B3,B2,B1,B0 step by step following the References-1 as
% follows:
% let B3 = B2 = B1 = B0 = 0
% if (d(n) < 0)
% then B3 = 1
% d(n) = ABS(d(n))
% if (d(n) >= ss(n))
% then B2 = 1 and d(n) = d(n) - ss(n)
% if (d(n) >= ss(n) / 2)
% then B1 = 1 and d(n) = d(n) - ss(n) / 2
% if (d(n) >= ss(n) / 4)
% then B0 = 1 L(n) = (10002 * B3) + (1002 * B2) + (102 * B1) + B0
if diff<0,
diff = abs(diff);
B3(i) = 1;
end
if diff < ss(index+1)/4,
B2(i) = 0; B1(i) = 0; B0(i) = 0;
elseif diff > ss(index+1)/4 && diff < ss(index+1)/2,
B2(i) = 0; B1(i) = 0; B0(i) = 1;
elseif diff > ss(index+1)/2 && diff < ss(index+1)*3/4,
B2(i) = 0; B1(i) = 1; B0(i) = 0;
elseif diff > ss(index+1)*3/4 && diff < ss(index+1),
B2(i) = 0; B1(i) = 1; B0(i) = 1;
elseif diff > ss(index+1) && diff < ss(index+1)*5/4,
B2(i) = 1; B1(i) = 0; B0(i) = 0;
elseif diff > ss(index+1)*5/4 && diff < ss(index+1)*3/2,
B2(i) = 1; B1(i) = 0; B0(i) = 1;
elseif diff > ss(index+1)*3/2 && diff < ss(index+1)*7/4,
B2(i) = 1; B1(i) = 1; B0(i) = 0;
elseif diff > ss(index+1)*7/4,
B2(i) = 1; B1(i) = 1; B0(i) = 1;
end
L = 8*B3(i) + 4*B2(i) + 2*B1(i) + B0(i); % Convert the binary number "(B3B2B1B0)_2" to decimal number L as output
out(i) = L;
% Get the data-increment based on step_sizes_table and index
diff = fix(ss(index+1)/8) + fix(B0(i)*ss(index+1)/4) + fix(B1(i)*ss(index+1)/2) + fix(B2(i)*ss(index+1));
diff = (-1)^B3(i)*diff;
pre_data = pre_data + diff; % Get the predicted data according to the data-increment
index = index + Ml_values_table(4*B2(i) + 2*B1(i) + 1*B0(i) + 1); % Convert the binary number "(B2B1B0)_2" to decimal number
if (index<0),
index=0;
elseif (index>48),
index=48; % Limit the index in the range of step_sizes_table:(0,49)
end
end
end
🎉3 参考文献
部分理论来源于网络,如有侵权请联系删除。