【语音处理】基于自适应差分脉冲编码调制(ADPCM)的实现研究(Matlab代码实现)

 👨‍🎓个人主页

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

基于自适应差分脉冲编码调制(ADPCM)的实现研究

1. 基本原理与技术特点

2. 关键算法与实现框架

3. 实现中的常见问题与解决方案

4. 性能对比与标准应用

4.1 算法性能评估

4.2 主要标准与变体

4.3 与其他编码技术对比

5. 现有研究进展与专利

6. 结论与展望

📚2 运行结果 

🎉3 参考文献

 🌈4 Matlab代码、语音、文章下载


💥1 概述

本应讲解在对话语音处理应用中使用的自适应差分脉冲编码调制(ADPCM)的实现

包括以下内容:

•语音数据文件的文件格式

•ADPCM编码算法

•ADPCM解码算法

•步长确定

•初始和重置条件。

图1显示了ADPCM编码过程的框图。将线性输入样本X(n)与该输入X(n-l)的先前估计进行比较。差值d(n)以及当前步长ss(n)被提供给编码器逻辑。如下所述,该逻辑产生ADPCM输出样本。该输出样本还用于更新步长计算ss(n+l),并提供给解码器以计算输入样本的线性估计。

编码器接受来自比较器的差值d(n)和步长,并计算4位ADPCM码。以下是此计算的伪代码表示:

let B3 = B2 = B1 = B0 = 0
if (d(n) < 0)
    then B3 = 1
d(n) = ABS(d(n))
if (d(n) >= ss(n))
    then B2 = 1 and d(n) = d(n) - ss(n)
if (d(n) >= ss(n) / 2)
    then B1 = 1 and d(n) = d(n) - ss(n) / 2
if (d(n) >= ss(n) / 4)
    then B0 = 1
L(n) = (10002 * B3) + (1002 * B2) + (102 * B1) + B0 

基于自适应差分脉冲编码调制(ADPCM)的实现研究

1. 基本原理与技术特点

自适应差分脉冲编码调制(ADPCM)是一种结合差分编码与自适应量化的波形编码技术,旨在降低数据量同时保持语音质量。其核心思想包括:

  1. 差分编码:利用语音信号的样值相关性,仅对实际信号与预测值的差值进行编码。由于差值动态范围远小于原始信号,可实现低比特率编码(如4位/样本)。
  2. 自适应量化:根据差值信号的统计特性动态调整量化步长。小差值使用小步长以保留细节,大差值使用大步长以减少过载失真。
  3. 预测器设计:采用前向或后向自适应预测器,通过历史样本预测当前值,最小化预测误差。前向自适应需传输边信息,后向自适应则通过量化输出自动调整。

技术特点

  • 压缩效率:典型压缩比为1:4(如16位PCM→4位ADPCM),适用于32 kbps及更低速率的通信场景。
  • 低复杂度:编解码算法简单,延迟短(约0.125 ms),适合实时处理。
  • 自适应能力:量化器和预测器均支持动态调整,可适应信号的非平稳特性。
2. 关键算法与实现框架

实现框架示例(IMA ADPCM)

  • 编码器:输入16位PCM,输出4位ADPCM流,状态变量包括当前预测值和步长索引。
  • 解码器:输入4位ADPCM流,输出16位PCM,需维护与编码器相同的步长和预测状态。
3. 实现中的常见问题与解决方案
  1. 量化噪声累积

    • 问题:步长调整滞后导致高频细节丢失,产生粗糙音质。
    • 解决:采用音节自适应(如每10-20 ms调整步长)或混合自适应(结合瞬时与长时统计)。
  2. 溢出处理

    • 预测值溢出:限制预测值在16位有符号范围(-32768~32767)。
    • 步长索引越界:强制索引在0-88之间,防止查表错误。
  3. 编解码同步

    • 问题:信道误码或初始状态不一致导致解码偏移。
    • 解决:传输初始状态信息(如前几个样本的PCM值)或使用后向自适应避免边信息依赖。
  4. 硬件资源限制

    • 优化策略:简化预测器阶数(如从10阶降至4阶),牺牲少量SNR换取计算效率。
    • FPGA实现:利用查找表固化步长调整逻辑,减少实时计算量。

4. 性能对比与标准应用
4.1 算法性能评估
  • 信噪比(SNR) :标准ADPCM(G.726)在32 kbps下SNR约35 dB,改进算法如算法-2可提升2.3 dB。
  • 抗误码能力:Lattice预测器在10⁻³误码率下优于CVSD,但需牺牲约20%计算资源。
4.2 主要标准与变体
标准码率(kbps)应用场景特点
G.72132电话语音首个ITU-T标准,兼容PCM
G.72616-40DCME、卫星通信支持动态码率切换
IMA ADPCM16-64游戏音频、嵌入式系统开源实现,无专利限制
MS ADPCM32Windows系统提示音固定块头结构,易于文件存储
4.3 与其他编码技术对比
技术压缩比延迟音质适用场景
PCM1:1无损高保真录音
MP310:150 ms接近CD音乐流媒体
CVSD2:1极低中等军事通信、抗强噪声环境
ADPCM4:1<1 ms电话级实时通信、嵌入式存储
5. 现有研究进展与专利
  • 算法改进:如算法-2通过多级预测器组合降低失真,适用于9.6 kbps QAM信号。
  • 硬件优化:Microchip的ADPCM实现占用仅45% FPGA资源,适合便携设备。
  • 专利技术
    • CN112512591 B:基于PSMA的ADPCM药物偶联物(医疗领域跨界应用)。
    • EP3873460 B1:改进的步长调整逻辑,提升低码率下的语音清晰度。
6. 结论与展望

ADPCM凭借其低复杂度与实时性,在语音通信、嵌入式音频存储等领域仍具不可替代性。未来研究方向包括:

  • 深度学习融合:利用神经网络优化预测器,减少量化噪声。
  • 跨标准兼容:统一IMA、MS等变体的解码框架(如FFmpeg插件化支持)。
  • 量子化编码:探索基于量子比特的非均匀量化,突破传统4位限制。

通过持续优化算法与硬件适配,ADPCM有望在物联网、边缘计算等新兴场景中焕发新生。

📚2 运行结果 

部分代码:

function [out,B0,B1,B2,B3] = encoder(x)
%ADPCM Encoder.
% Args:
%   x: An audio file with the format as Microsoft WAVE ".wav".
%
% Returns:
%   out: A row matrix containing the quantified and encoded decimal stream transformed from the
%        encoded binary bit stream, with the ADPCM encoded.
%   B0: A row matrix containing the lowest order of each output(out) in binary format.
%   B1: A row matrix containing the second low order of each output(out) in binary format.
%   B2: A row matrix containing the second high order of each output(out) in binary format.
%   B3: A row matrix containing the highest order of each output(out) in binary format.
%

%
%Finished by Qiushi Yang, 6/12/2018.

Ml_values_table = [-1,-1,-1,-1,2,4,6,8];
step_sizes_table = [16,17,19,21,23,25,28,31,34,37,41,45,50,55,60,66,73,80,88,97,107,118,130,143,157,173,190,209,230,253,279,307,337,371,408,449,494,544,598,658,724,796,876,963,1060,1166,1282,1411,1552];
ss = step_sizes_table;

% Initialization
index = 0;
pre_data = 0;
B0=zeros(size(x));
B1=zeros(size(x)); 
B2=zeros(size(x)); 
B3=zeros(size(x));
% L=0;
out = zeros(size(x));

for i = 1:length(x),
    current_data = x(i);                % input current data
    diff = current_data - pre_data;     % calculate data-increment

    % Calculate the B3,B2,B1,B0 step by step following the References-1 as
    % follows:
    %     let B3 = B2 = B1 = B0 = 0 
    %     if (d(n) < 0)    
    %         then B3 = 1 
    %     d(n) = ABS(d(n)) 
    %     if (d(n) >= ss(n))    
    %         then B2 = 1 and d(n) = d(n) - ss(n) 
    %     if (d(n) >= ss(n) / 2)    
    %         then B1 = 1 and d(n) = d(n) - ss(n) / 2 
    %     if (d(n) >= ss(n) / 4)    
    %         then B0 = 1 L(n) = (10002 * B3) + (1002 * B2) + (102 * B1) + B0   
    if diff<0,
        diff = abs(diff); 
        B3(i) = 1; 
    end
    
    if diff < ss(index+1)/4,
        B2(i) = 0; B1(i) = 0; B0(i) = 0;
    elseif diff > ss(index+1)/4 && diff < ss(index+1)/2,
        B2(i) = 0; B1(i) = 0; B0(i) = 1;
    elseif diff > ss(index+1)/2 && diff < ss(index+1)*3/4,
        B2(i) = 0; B1(i) = 1; B0(i) = 0;
    elseif diff > ss(index+1)*3/4 && diff < ss(index+1),
        B2(i) = 0; B1(i) = 1; B0(i) = 1;
    elseif diff > ss(index+1) && diff < ss(index+1)*5/4,
        B2(i) = 1; B1(i) = 0; B0(i) = 0;
    elseif diff > ss(index+1)*5/4 && diff < ss(index+1)*3/2,
        B2(i) = 1; B1(i) = 0; B0(i) = 1;
    elseif diff > ss(index+1)*3/2 && diff < ss(index+1)*7/4,
        B2(i) = 1; B1(i) = 1; B0(i) = 0;
    elseif diff > ss(index+1)*7/4,
        B2(i) = 1; B1(i) = 1; B0(i) = 1;
    end

    L = 8*B3(i) + 4*B2(i) + 2*B1(i) + B0(i); % Convert the binary number "(B3B2B1B0)_2" to decimal number L as output
    out(i) = L;
    
    % Get the data-increment based on step_sizes_table and index
    diff = fix(ss(index+1)/8) + fix(B0(i)*ss(index+1)/4) + fix(B1(i)*ss(index+1)/2) + fix(B2(i)*ss(index+1));
    diff = (-1)^B3(i)*diff;
    pre_data = pre_data + diff; % Get the predicted data according to the data-increment
    
    index = index + Ml_values_table(4*B2(i) + 2*B1(i) + 1*B0(i) + 1);  % Convert the binary number "(B2B1B0)_2" to decimal number

    if (index<0),
        index=0;
    elseif (index>48),
        index=48;     % Limit the index in the range of step_sizes_table:(0,49)
    end
    
end
end

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

 🌈4 Matlab代码、语音、文章下载

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

荔枝科研社

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值