垂直起降飞行器的设计与控制:固定翼和四旋翼整合自主飞行研究(Matlab代码实现)

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

一、引言

二、VTOL飞行器设计方案

1. 设计目标

2. 结构设计

3. 动力系统设计

三、控制系统设计

1. 姿态控制

2. 位置控制

3. 模式切换控制

四、Matlab仿真与验证

五、挑战与未来发展方向

六、结论

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码及文章


💥1 概述

本文着重于对垂直起降(VTOL)无人机的建模和控制,用于货物投递。我们的目标是开发一个高效的控制系统,使无人机能够准确保持120米的高度,并在距离起点一定距离内投递包裹。VTOL结合了固定翼和四旋翼的优点,具有长航程和高机动性。

这项工作涉及对不同控制器的设计、实施和测试,以确定固定翼和四旋翼各自最有效的控制器。对于四旋翼,我们测试和比较了修改后的PID控制器、遗传算法和非线性模型预测控制器(NLMPC)。至于固定翼飞机,我们选择了线性二次控制器(LQR)、总能量控制系统(TECS)、模糊逻辑控制器(FLC)和模型预测控制器(MPC)进行分析和比较。控制器在瞬态响应、扰动抑制和噪声韧性方面进行了分析。对于固定翼,MPC已被证明是更好的控制器,而NLMPC被选为四旋翼的控制器。它们应该在VTOL设计中结合起来,以实现高水平的性能和货物投递的准确性。

无人机(UAVs),也被称为无人机,已经改变了我们处理各种工作的方式,从航空摄影到科学研究,甚至包裹投递。这些自主或远程操控的飞行器已经推动了航空领域的边界,对商业和军事用途都有巨大的潜力。在各种形式的无人机中,垂直起降(VTOL)飞行器是一个特别引人注目的类别。与需要跑道起降的标准固定翼飞机不同,VTOL飞行器具有独特的垂直爬升和下降能力,使其具有出色的机动性和进入难以到达的地点的能力。这一特点,再加上控制系统和技术创新的发展,推动了VTOL飞行器成为研发工作的前沿。在这项工作中,我们探讨了VTOL无人机的建模和控制,深入研究了其设计的复杂性以及实现其全部潜力所遇到的困难。通过对这些尖端飞行器的深入研究,我们希望揭示它们在不同行业中的无限潜力,从交通运输和监视到灾难应对等等。

1.1 动机
对垂直起降(VTOL)飞行器的建模和控制是一个引人入胜的研究领域,特别是固定翼和四旋翼设计。控制系统的进步扩展了无人飞行器(UAVs)的能力,提供了更多的机动性、适应性和操作能力。通过有效地结合现代控制算法和传感器技术,无人机可以实现对姿态、位置和轨迹的精确控制,从而实现有效的货物投递、监视任务,甚至自主操作。

一、引言

垂直起降飞行器(VTOL)凭借其兼具垂直起降和水平飞行的能力,在民用和军事领域展现出巨大的应用潜力。然而,VTOL的设计与控制远比传统固定翼飞机或旋翼飞机复杂,涉及多学科交叉,对控制算法的精度和鲁棒性提出了更高的要求。本文将深入探讨一种融合固定翼和四旋翼技术的VTOL飞行器设计与控制方案。

二、VTOL飞行器设计方案

1. 设计目标

设计一种兼具垂直起降能力和高效巡航能力的混合型VTOL飞行器,以克服传统VTOL在续航能力和航程方面的不足。

2. 结构设计
  • 布局:混合型VTOL飞行器采用“固定翼+四旋翼”的布局,前置四旋翼,后置固定翼。这种设计使得固定翼能够提供主要的水平飞行推力,而四旋翼则负责垂直起降和姿态控制。
  • 空气动力学设计:固定翼和四旋翼的相互干扰需要仔细考虑。四旋翼的旋翼向下喷射的气流会对固定翼的升力、阻力以及稳定性产生影响,尤其是在低速飞行和垂直起降阶段。因此,需要进行精细的空气动力学建模和仿真,优化机翼和旋翼的布局、尺寸和形状,以最大限度地减少干扰,提高整体气动效率。
3. 动力系统设计

选择高效的动力系统,确保足够的续航时间。同时,需要考虑电机、螺旋桨的选型以及相应的控制算法,以确保四旋翼部分具有足够的升力和姿态控制精度。

三、控制系统设计

控制系统是混合型VTOL自主飞行的核心。由于该系统具有高度的非线性、强耦合特性以及外部扰动的影响,其控制算法的设计难度较大。

1. 姿态控制

姿态控制的目标是使飞行器姿态保持稳定或跟踪预设的姿态指令。可以使用PID控制、模型预测控制(MPC)或其他先进控制算法,根据飞行器姿态误差计算控制指令,并发送给四旋翼电机进行姿态调整。

2. 位置控制

位置控制需要结合GPS、视觉传感器等信息进行反馈,并采用路径规划算法(如A*算法或动态窗口法)生成期望轨迹。控制算法可以采用MPC或其他先进控制算法,以实现精确的位置跟踪和轨迹跟踪。

3. 模式切换控制

混合型VTOL需要根据飞行阶段(垂直起降或水平飞行)切换不同的控制模式。这需要设计一个可靠的模式切换机制,以确保系统在不同模式之间平滑过渡,避免出现振荡或失稳。

四、Matlab仿真与验证

基于Matlab/Simulink平台,可以搭建混合型VTOL的仿真模型,并进行控制算法的设计和验证。以下是Matlab仿真的关键步骤:

  1. 建立动力学模型:使用Matlab函数构建包含固定翼和四旋翼动力学特性的非线性模型,并进行模型线性化,用于设计线性控制器的参数。
  2. 设计控制器:使用Matlab的控制系统工具箱设计姿态控制器和轨迹跟踪控制器,例如PID控制器或LQR控制器。可以根据需要选择合适的控制器,并进行参数整定。
  3. 仿真验证:使用Simulink建立仿真模型,模拟飞行器的飞行过程,验证控制算法的有效性,并对控制器参数进行调整优化。可以模拟各种飞行场景,如垂直起降、水平飞行、轨迹跟踪等,以全面评估控制系统的性能。

五、挑战与未来发展方向

尽管混合型VTOL飞行器在设计和控制方面取得了显著进展,但仍面临诸多挑战。未来的研究方向可以集中在以下几个方面:

  1. 提高控制算法的鲁棒性和适应性:考虑风力干扰、传感器噪声等因素的影响,开发更加高效、鲁棒的控制算法。
  2. 增强自主飞行能力:发展更先进的环境感知技术和自主导航算法,实现更复杂环境下的自主飞行任务。
  3. 优化空气动力学设计:采用更先进的计算流体力学(CFD)技术,优化固定翼和四旋翼的布局,提高整体气动效率,降低能耗。
  4. 提高系统集成度:开发更加可靠、模块化的系统架构,提高系统的可靠性和维护性。

六、结论

固定翼和四旋翼整合的自主飞行研究是VTOL领域的一个重要方向。通过合理的系统设计、先进的控制算法和有效的仿真验证,可以有效地提升混合型VTOL的自主飞行能力,并将其应用于更广泛的领域。未来的研究将依赖于多学科的交叉融合,包括空气动力学、控制理论、人工智能、计算机科学等多个领域,共同努力才能实现更安全、更可靠、更智能的混合型VTOL自主飞行系统。

📚2 运行结果

部分代码:

%%%LQR:
%%% u; w; q; Theta; h; error theta
%% 100*[1 0 0 0 0 0; 0 1 0 0 0 0; 0 0 1 0 0 0; 0 0 0 10 0 0; 0 0 0 0 10 0; 0 0 0 0 0 100];
 Q_long_hat= 1000*[1/(u0+0.1)^2 0 0 0 0 0; 0 1/(w0+0.1)^2 0 0 0 0; 0 0 1/(1+q0)^2 0 0 0; 0 0 0 10/(0.1+Theta0)^2 0 0; 0 0 0 0 10/(0.1+Hi)^2 0; 0 0 0 0 0 100/(0.01)^2]


 %K_long_reglator=lqr(A_long, B_long,Q_long,R_long);
 K_long_hat=lqr(A_long_hat, B_long_hat,Q_long_hat,R_long);
 K=K_long_hat(:,1:5);
 Ki=-K_long_hat(:,6);
 
%K_long =K_hat_long;
%K_long(:,6) = [];
%Ki_long=K_hat_long(:,6);

%%%Closed loop system
% reglator_sys = ss((A_long - B_long*K_long), B_long, C_long, D_long);
 sys = ss((A_long_hat - B_long_hat* K_long_hat), B_long_hat, C_long_hat, D_long_hat);

%%% simulation
%(1) Simulation without theta disturbance =2 degree with input zero signal 
 t=0:0.1:10;
u_input=[zeros(1,numel(t));zeros(1,numel(t))];
ff=d_elevatori+zeros(1,numel(t));
kk =d_Thrust0+zeros(1,numel(t));
%u_input=[ff;kk];


[Y,T,e]=lsim(sys,u_input,t,e_longi);
%[y,t,x] = initial(sys, x0, t);
%[y,t,e] = step(sys, t);
figure(1)
plot(t,Theta0*180/pi-e(:,4)*180/pi,'r',t,Theta0*180/pi+zeros(1,numel(t)),'b')
title('Pitch angel Response with theta disturbance =2 degree and zero inputs')
xlabel('time') 
legend('theta','theta0')

figure(2)
plot(t,Ze0-e(:,5),'r',t,Ze0+zeros(1,numel(t)),'b')
title('H Response theta disturbance =2 degree and zero inputs')
xlabel('time') 
legend('h','h0')

figure(3)
plot(t,u0-e(:,1),'r',t,u0+zeros(1,numel(t)),'b')
title('u Response theta disturbance =2 degree and zero inputs')
xlabel('time') 
legend('u','u0')

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

🌈4 Matlab代码及文章

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

荔枝科研社

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值