采用改进合同网模型通过模拟市场机制中的“招标-投标-中标”模式,采用多种合同类型,通过多个个体之间的相互通信和协商,在个体追求最优的基础上,寻求全局最优和次优(Matlab代码实现)

    💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

基于改进合同网模型的全局优化研究

一、合同网模型的基本原理与核心挑战

二、市场机制与合同网模型的结合策略

三、改进合同网模型的关键技术

四、应用案例与实证分析

五、现有研究与未来方向

六、结论

📚2 运行结果

🎉3 参考文献 

🌈4 Matlab代码实现


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于改进合同网模型的全局优化研究


一、合同网模型的基本原理与核心挑战
  1. 模型定义与流程
    合同网协议(Contract Net Protocol, CNP)是一种分布式任务分配机制,模拟市场中的“招标-投标-中标”模式。其核心角色包括 管理者(Manager)、投标者(Bidder)、合同者(Contractor) ,流程分为四阶段:

    • 任务发布:管理者广播任务需求及约束条件(如任务描述、技术规格、截止时间等)。
    • 投标与评估:投标者基于自身能力(资源、成本、负载等)提交标书,管理者通过边际成本计算多属性效用模型选择最优投标者。
    • 合同签订与执行:中标者完成任务后反馈结果,管理者审查后终止协议。
  2. 传统模型的局限性

    • 通信负载高:广播式招标导致大量冗余消息,系统效率低下。
    • 个体理性与全局冲突:个体追求局部最优可能导致资源分配不均或任务重叠。
    • 动态适应性差:传统模型难以应对实时环境变化(如新增任务、节点故障)。

二、市场机制与合同网模型的结合策略
  1. 市场机制的流程映射
    招标-投标-中标模式与合同网的对应关系如下:

    市场机制阶段合同网实现方式优化目标
    招标公告任务广播(含优先级、时间窗口)扩大潜在投标者范围
    投标文件准备基于边际成本或博弈论的投标策略提升个体效用
    评标与定标多目标优化算法(如匈牙利算法、帕累托最优)全局资源均衡
  2. 合同类型扩展

    • 买卖合同:基础任务拍卖,适用于常规任务分配。
    • 交换合同:允许任务置换,解决资源冲突或负载不均衡。
    • 替换合同:动态调整低优先级任务,响应紧急需求。

三、改进合同网模型的关键技术
  1. 通信优化策略

    • 联盟机制:通过熟人网络限制投标范围,减少无效通信。
    • 公告板模型:集中存储任务状态与资源信息,降低分布式协商复杂度。
    • 优先级调度:按任务紧急度排序,优先分配高价值任务。
  2. 博弈论与全局优化

    • 帕累托最优:通过资源分配使任一智能体效用提升不损害其他个体利益。
    • 纳什均衡:设计激励策略(如奖惩机制),促使个体决策趋近全局最优。
    • 动态博弈模型:结合强化学习,实时调整投标策略以适应环境变化。
  3. 多智能体协商机制

    • 分布式一致性算法:使用Paxos或Raft协议解决冲突。
    • 信任与信誉模型:基于历史合作记录动态调整投标权重。

四、应用案例与实证分析
  1. 无人机协同任务分配

    • 场景:多无人机动态目标打击,需实时响应新增任务。
    • 改进方法:结合匈牙利算法(CNP-HA)与熟人机制,减少无效指派。
    • 效果:通信量降低30%,任务完成率提升15%。
  2. 农业机械集群调度

    • 场景:农机动态作业任务分配,需平衡负载与能耗。
    • 改进方法:基于边际成本的投标模型,优化任务插入顺序。
    • 效果:能耗减少20%,任务响应时间缩短25%。

五、现有研究与未来方向
  1. 文献综述

    • 传统改进模型:联盟机制、公告板、优先级调度等。
    • 算法融合:合同网与遗传算法、模拟退火结合提升寻优效率。
  2. 未来研究方向

    • 异构智能体协作:兼容不同能力节点的动态任务分配。
    • 边缘计算支持:低延迟通信框架设计,适应实时任务需求。
    • 伦理与安全性:防止恶意投标或数据篡改,确保系统可信。

六、结论

改进合同网模型通过市场机制映射多合同类型扩展博弈论优化,有效平衡个体理性与全局最优。在无人机、农业、智能制造等领域的实证表明,其在降低通信负载、提升动态适应性方面具有显著优势。未来需进一步探索异构环境下的通用协商协议与安全机制,以支撑更复杂的多智能体协作场景。

📚2 运行结果

部分代码:

function []=PDQN()
   % clear all;clc;
    addpath(genpath('Environment'));
    addpath(genpath('Agent'));
    seed = 0;
    rand('state',seed);
    % 加载环境信息,像素255表示障碍物情况
    Ob=imread('PDQN_08_b.jpg');Ob=Ob(:,:,1);
    % 无人机运动学模型:最高速度[pixel/s],最高旋转速度[rad/s],加速度[pixel/ss],
    % 旋转加速度[rad/ss],速度分辨率[pixel/s],转速分辨率[rad/s]]
    Kinematic=[200,0.8,80,1.6,3,0.08];
    % 评价函数参数 [heading,dist,velocity,predictDT]
    evalParam=[ones(1,3),0.5];
    % 最大距离阈值
    stochRmax=10;
    % 时间间隔
    global dt;dt=0.2;
    % 训练轮数/每轮迭代点数
    E=4;M=1;
    % 初始化当前状态、初始化目标点
    % 机器人的初期状态[x(m),y(m),yaw(Rad),v(m/s),w(rad/s)]
    % 初始化训练网络
    %path='Model/model_0923_1139.mat';
    path='Model/';
    %load('Model/model_0923_1139.mat')
    %{
    x=InitialState(Ob);
    goal=GoalRandGen(x(1:2),Ob);
    %} 
    x=[144 427 0 0 0];
    goal=[658 301];
    [SurOb,~]=PDQN_GetCurSurOb(x,goal,Ob);
    net=CreateNeuralNetneural(1,path,SurOb,zeros(36,1));

    % 状态情况存储
    StochQmean=zeros(E,1);TrainRmean=zeros(E,M+1);
    StochCount=zeros(E,1);TrainCount=zeros(E,M+1);
    StochFail=zeros(E,1);TrainFail=zeros(E,M+1);
    State.x=zeros(M,5);State.goal=zeros(M,2);
    
   % eps-greedy
    Const.eps=0.5;
    % 退火系数
    Const.anneal=0.95;
    % 缓存区大小和batch大小
    Const.BufferSize=50;    Const.BatchSize=10;
    net.opts.batchsize=Const.BatchSize;
    % DQN中的学习率和折扣率
    Const.alpha=0.8;    Const.gamma=0.95;
    Const.ratio=10000;

    % 初始化并储存每一轮的起始点/目标点信息
    for m=1:M
        %x=InitialState(Ob);
        x=[144 427 0 0 0];
       % goal=GoalRandGen(x(1:2),Ob);
        goal=[658 301];
        State.x(m,:)=x;
        State.goal(m,:)=goal;
    end

    % 主训练程序
   for e=1:E
   % for e=109:E
        tic
        % 退火
        Const.eps=Const.eps*Const.anneal;
        % 打乱起始点/目标点的顺序
        rank=randperm(M);
        % 首先用随机参数前进一次
        [StochQmean(e),StochCount(e),StochFail(e),x_traj1{e}]=StochParamGetQmeanGUO(State,Kinematic,rank,Ob,net,Const);
        % 开始学习
        [TrainRmean(e,:),TrainCount(e,:),TrainFail(e,:),net]=Train(State,Kinematic,rank,Ob,net,Const);
        % 打印并存储本次训练结果
        DisplayAndStore(net,StochQmean,StochCount,StochFail,TrainRmean,TrainCount,TrainFail,e,E,rank(1));
        toc
    end

🎉3 参考文献 

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)

[1]高飞燕.基于扩展合同网的多Agent任务分配机制的研究[D].大连海事大学[2025-05-15].DOI:10.7666/d.y1548399.

[2]王强,贾强.基于改进合同网的多无人机动态任务分配[J].火炮发射与控制学报[2025-05-15].

🌈Matlab代码实现

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

荔枝科研社

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值