💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
基于改进合同网模型的全局优化研究
一、合同网模型的基本原理与核心挑战
-
模型定义与流程
合同网协议(Contract Net Protocol, CNP)是一种分布式任务分配机制,模拟市场中的“招标-投标-中标”模式。其核心角色包括 管理者(Manager)、投标者(Bidder)、合同者(Contractor) ,流程分为四阶段:- 任务发布:管理者广播任务需求及约束条件(如任务描述、技术规格、截止时间等)。
- 投标与评估:投标者基于自身能力(资源、成本、负载等)提交标书,管理者通过边际成本计算或多属性效用模型选择最优投标者。
- 合同签订与执行:中标者完成任务后反馈结果,管理者审查后终止协议。
-
传统模型的局限性
- 通信负载高:广播式招标导致大量冗余消息,系统效率低下。
- 个体理性与全局冲突:个体追求局部最优可能导致资源分配不均或任务重叠。
- 动态适应性差:传统模型难以应对实时环境变化(如新增任务、节点故障)。
二、市场机制与合同网模型的结合策略
-
市场机制的流程映射
招标-投标-中标模式与合同网的对应关系如下:市场机制阶段 合同网实现方式 优化目标 招标公告 任务广播(含优先级、时间窗口) 扩大潜在投标者范围 投标文件准备 基于边际成本或博弈论的投标策略 提升个体效用 评标与定标 多目标优化算法(如匈牙利算法、帕累托最优) 全局资源均衡 -
合同类型扩展
- 买卖合同:基础任务拍卖,适用于常规任务分配。
- 交换合同:允许任务置换,解决资源冲突或负载不均衡。
- 替换合同:动态调整低优先级任务,响应紧急需求。
三、改进合同网模型的关键技术
-
通信优化策略
- 联盟机制:通过熟人网络限制投标范围,减少无效通信。
- 公告板模型:集中存储任务状态与资源信息,降低分布式协商复杂度。
- 优先级调度:按任务紧急度排序,优先分配高价值任务。
-
博弈论与全局优化
- 帕累托最优:通过资源分配使任一智能体效用提升不损害其他个体利益。
- 纳什均衡:设计激励策略(如奖惩机制),促使个体决策趋近全局最优。
- 动态博弈模型:结合强化学习,实时调整投标策略以适应环境变化。
-
多智能体协商机制
- 分布式一致性算法:使用Paxos或Raft协议解决冲突。
- 信任与信誉模型:基于历史合作记录动态调整投标权重。
四、应用案例与实证分析
-
无人机协同任务分配
- 场景:多无人机动态目标打击,需实时响应新增任务。
- 改进方法:结合匈牙利算法(CNP-HA)与熟人机制,减少无效指派。
- 效果:通信量降低30%,任务完成率提升15%。
-
农业机械集群调度
- 场景:农机动态作业任务分配,需平衡负载与能耗。
- 改进方法:基于边际成本的投标模型,优化任务插入顺序。
- 效果:能耗减少20%,任务响应时间缩短25%。
五、现有研究与未来方向
-
文献综述
- 传统改进模型:联盟机制、公告板、优先级调度等。
- 算法融合:合同网与遗传算法、模拟退火结合提升寻优效率。
-
未来研究方向
- 异构智能体协作:兼容不同能力节点的动态任务分配。
- 边缘计算支持:低延迟通信框架设计,适应实时任务需求。
- 伦理与安全性:防止恶意投标或数据篡改,确保系统可信。
六、结论
改进合同网模型通过市场机制映射、多合同类型扩展及博弈论优化,有效平衡个体理性与全局最优。在无人机、农业、智能制造等领域的实证表明,其在降低通信负载、提升动态适应性方面具有显著优势。未来需进一步探索异构环境下的通用协商协议与安全机制,以支撑更复杂的多智能体协作场景。
📚2 运行结果
部分代码:
function []=PDQN()
% clear all;clc;
addpath(genpath('Environment'));
addpath(genpath('Agent'));
seed = 0;
rand('state',seed);
% 加载环境信息,像素255表示障碍物情况
Ob=imread('PDQN_08_b.jpg');Ob=Ob(:,:,1);
% 无人机运动学模型:最高速度[pixel/s],最高旋转速度[rad/s],加速度[pixel/ss],
% 旋转加速度[rad/ss],速度分辨率[pixel/s],转速分辨率[rad/s]]
Kinematic=[200,0.8,80,1.6,3,0.08];
% 评价函数参数 [heading,dist,velocity,predictDT]
evalParam=[ones(1,3),0.5];
% 最大距离阈值
stochRmax=10;
% 时间间隔
global dt;dt=0.2;
% 训练轮数/每轮迭代点数
E=4;M=1;
% 初始化当前状态、初始化目标点
% 机器人的初期状态[x(m),y(m),yaw(Rad),v(m/s),w(rad/s)]
% 初始化训练网络
%path='Model/model_0923_1139.mat';
path='Model/';
%load('Model/model_0923_1139.mat')
%{
x=InitialState(Ob);
goal=GoalRandGen(x(1:2),Ob);
%}
x=[144 427 0 0 0];
goal=[658 301];
[SurOb,~]=PDQN_GetCurSurOb(x,goal,Ob);
net=CreateNeuralNetneural(1,path,SurOb,zeros(36,1));
% 状态情况存储
StochQmean=zeros(E,1);TrainRmean=zeros(E,M+1);
StochCount=zeros(E,1);TrainCount=zeros(E,M+1);
StochFail=zeros(E,1);TrainFail=zeros(E,M+1);
State.x=zeros(M,5);State.goal=zeros(M,2);
% eps-greedy
Const.eps=0.5;
% 退火系数
Const.anneal=0.95;
% 缓存区大小和batch大小
Const.BufferSize=50; Const.BatchSize=10;
net.opts.batchsize=Const.BatchSize;
% DQN中的学习率和折扣率
Const.alpha=0.8; Const.gamma=0.95;
Const.ratio=10000;
% 初始化并储存每一轮的起始点/目标点信息
for m=1:M
%x=InitialState(Ob);
x=[144 427 0 0 0];
% goal=GoalRandGen(x(1:2),Ob);
goal=[658 301];
State.x(m,:)=x;
State.goal(m,:)=goal;
end
% 主训练程序
for e=1:E
% for e=109:E
tic
% 退火
Const.eps=Const.eps*Const.anneal;
% 打乱起始点/目标点的顺序
rank=randperm(M);
% 首先用随机参数前进一次
[StochQmean(e),StochCount(e),StochFail(e),x_traj1{e}]=StochParamGetQmeanGUO(State,Kinematic,rank,Ob,net,Const);
% 开始学习
[TrainRmean(e,:),TrainCount(e,:),TrainFail(e,:),net]=Train(State,Kinematic,rank,Ob,net,Const);
% 打印并存储本次训练结果
DisplayAndStore(net,StochQmean,StochCount,StochFail,TrainRmean,TrainCount,TrainFail,e,E,rank(1));
toc
end
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)
[1]高飞燕.基于扩展合同网的多Agent任务分配机制的研究[D].大连海事大学[2025-05-15].DOI:10.7666/d.y1548399.
[2]王强,贾强.基于改进合同网的多无人机动态任务分配[J].火炮发射与控制学报[2025-05-15].
🌈4 Matlab代码实现
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取