💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
文献来源:
“碳中和”目标下电气互联系统有功-无功协同优化模型研究
随着环境污染和能源短缺问题日益严重,以新能源发电技术为基础的分布式电源( DG) 越来越广 泛地应用于配电网中。但由于新能源发电的随机性、间歇性和高渗透率,分布式电源的接入增加了配电网潮流的波动程度,有必要重新考虑电压的调节方法,对引入分布式电源的配电网无功优化问题进行深入研究。
传统配电网的无功优化主要是通过调节变压器有载分接头以及投切无功补偿设备,在满足电能质 量要求的前提下实现网络损耗最小、系统能量损耗最小、平衡系统负荷、提高系统可靠性等目标。 当分布式电源接入配电网后,需要投入更多容量的无功补偿设备以增强调节电压的能力,这将增加不少成本。若能够考虑逆变器的无功特性,通过逆变器控制的分布式电源参与配电网的无功优化调节,则可大大减少配电网无功补偿设备的投资。
由于无功优化问题通常是非凸、非 线 性 且NP-难,它不像线性规划问题易于理解、找到全局最优解,其求解方法颇为复杂。目前国内外关于配电网无功优化的算法主要分为两类,一类是潮 流优化的经典算法,包括简化梯度法、牛顿法、支路交换法、内 点 法、线 性 规 划 法、二 次 规 划 法 等,这些方法应用广泛,但也存在编程困难、只能得到局部最优解等缺点。另一类是人工智能算法。
二阶锥规划( SOCP) 问题是在有限个二阶( 洛伦兹) 锥的笛卡尔乘积与仿射子空间的交集上求一
个线性目标函数的最小值或最大值,它实际上是半定规划的一种特例,是线性规划的推广,属于凸规划问题,可以在多项式时间内得到全局最优解,具有计算效率高,收敛速度快的优点。
二阶锥的标准形式为:
所建立的优化模型是一个非凸、非线性、NP-难的模型,难以直接得到最优解,因此需要对原模型进行松弛凸化处理。 首先采用相角松弛的方法,将复数变量转化为幅值形式的实数变量,从而将支路潮流方程线性化。
一、碳中和目标对电气互联系统的新要求
在“碳中和”目标驱动下,电力系统需应对以下核心挑战:
- 高比例可再生能源接入:预计2030年中国风电与光伏装机超12亿千瓦,分布式新能源接入导致配电网潮流分布复杂化,电压波动、无功平衡问题加剧。
- 多能协同与灵活性提升:需通过源-网-荷-储协同优化,挖掘多能系统的调节弹性,例如结合天然气网络SOCR潮流约束改进,提升系统对新能源波动的适应性。
- 电能质量与效率优化:无功优化需兼顾电压稳定、网损降低和设备寿命延长,目标函数需包含无功补偿投资成本、网损最小化及电压偏移惩罚。
- 低碳运行约束:引入碳交易机制,通过经济杠杆调节无功补偿与有功调度,降低系统碳排放强度。
二、电气互联系统的基本结构与运行特点
电气互联系统(Electrical Interconnection Systems)作为多能流传输的核心载体,具有以下特征:
- 多层级互联:涵盖微系统级(如芯片)、子系统级(如PCB)和整机系统级互联,需保障电磁兼容、热稳定性及动态响应性能。
- 双向功率流动:新能源渗透率提升使配电网从无源网络转变为有源网络,功率双向流动导致传统调压设备(OLTC、SVC)调节能力受限。
- 复杂约束耦合:电力网络需考虑SVC容量限制、OLTC分接头调节次数,天然气网络需满足Weymouth方程描述的管道流量约束,形成混合整数非线性规划问题。
三、有功-无功协同优化模型的核心要素
1. 目标函数设计
- 多目标协同:典型目标包括:
- 最小化运行成本:涵盖发电成本、网损费用及碳交易成本
- 电压质量优化:节点电压偏差平方和最小化
- 新能源消纳最大化:提升风电/光伏出力占比
- 采用λ乘子法或Pareto前沿法处理多目标冲突,实现综合效益最优
2. 约束条件
- 电力网络:潮流方程、节点电压限值、设备动作次数限制(如电容器组每日投切≤5次)
- 天然气网络:节点流量平衡、管道压力约束,采用二阶锥松弛(SOCR)处理非线性方程
- 储能系统:SOC运行区间、充放电功率限制,需避免过充/过放
3. 优化算法与求解策略
算法类型 | 典型应用场景 | 优势与改进方向 |
---|---|---|
混合整数二阶锥规划(MISOCP) | 含离散设备(OLTC、CB)的配电网优化 | 通过大M法线性化离散变量,提升求解效率 |
两阶段鲁棒优化 | 应对风电/光伏出力不确定性 | 盒式集描述不确定性,C&CG算法分解主-子问题 |
改进粒子群算法 | 多目标动态优化(如DG接入场景) | 引入小生境策略避免早熟收敛,适应高维搜索空间 |
数据驱动模型 | 实时调度与预测控制 | 结合LSTM预测新能源出力,滚动优化降低误差 |
四、高比例可再生能源接入的挑战与应对
1. 关键问题
- 惯性缺失:新能源机组替代同步机导致系统惯性下降,频率变化率(RoCoF)增加,需储能提供虚拟惯性支撑
- 无功-电压耦合:光伏逆变器无功容量受有功出力制约,需建立降有功惩罚机制释放无功调节潜力
- 双向潮流冲击:馈线末端可能出现反向过载,需优化DG布局与动态无功补偿
2. 解决方案
- 多时间尺度协调:
- 日前阶段:基于风光预测制定OLTC、SVC计划
- 实时阶段:利用储能、SVG快速响应电压波动
- 柔性资源聚合:通过虚拟电厂(VPP)整合分布式储能、可控负荷,参与调压与调频辅助服务
五、储能系统的协同控制策略
- 功能定位:
- 电压支撑:储能PCS四象限运行,提供动态无功补偿
- 频率调节:VSG控制模拟同步机惯量响应,抑制频率突变
- 优化策略:
- 分层控制:上层优化SOC全局均衡,下层实现功率精确分配
- 一致性算法:分布式MPC协调多储能单元,权重分配基于SOC状态
六、现有模型的改进案例
- 电-氢协同优化:引入电解水制氢与燃料电池,平抑新能源波动,场景测试显示碳排放降低43.5%
- 虚拟电厂双层优化:上层优化碳配额分配,下层协调源-储-荷,实现碳排放下降33%
- 鲁棒-随机混合模型:结合盒式集与场景法,解决风光不确定性导致的电压越限问题,计算效率提升20%
七、未来研究方向
- 多能流深度耦合:拓展电-热-氢-气多能转换模型,提升综合能源利用率
- 人工智能融合:应用深度强化学习(DRL)实现实时优化,降低模型对精确参数的依赖
- 政策-技术协同:设计碳交易-绿证联动机制,激励无功资源参与低碳调度
结论
“碳中和”目标下的有功-无功协同优化需突破传统电力系统边界,构建多能互补、多时间尺度协调的优化框架。未来研究需重点关注高比例可再生能源渗透下的系统稳定性、储能与柔性负荷的协同控制,以及市场机制与技术模型的深度融合,为实现碳中和提供理论支撑与实践路径。
📚2 运行结果
🎉3 参考文献
部分理论来源于网络,如有侵权请联系删除。
[1]孙欣,严佳嘉,谢敬东等.“碳中和”目标下电气互联系统有功-无功协同优化模型[J].上海交通大学学报,2021,55(12):1554-1566.DOI:10.16183/j.cnki.jsjtu.2021.233.