Nhanes死亡数据,高分文章的密码,TyG指数与死亡间存在U型关联

郑老师统计课程,欢迎点击报名Nhanes公共数据库挖掘 课程

NHANES数据库中有一类指标是高分密码,死亡。从现实角度来说,死亡是医学绕不开的话题。从研究设计类型来说,死亡是NHANES数据库这一类横断面研究中唯一能做队列的数据。不论如何,得死亡者发高分文章。本期我们一起学习一篇关于死亡的研究。

2023年10月,一篇题为:The triglyceride-glucose index is a predictor for cardiovascular and all-cause mortality in CVD patients with diabetes or pre-diabetes: evidence from NHANES 2001-2018的研究论文发表于《Cardiovasc Diabetol》,本文为中国学者写作,文章属于中科院分区医学一区,2023年IF=9.3

这项研究通过多因素Cox比例风险模型与非限制性立方样条图,研究了糖尿病或糖尿病前期心血管疾病 (CVD)人群中,TyG指数与死亡率的关联。结果表明,在美国人群中,心血管疾病基线TyG指数与心血管疾病合并糖尿病或糖尿病前期患者的全因死亡率之间存在U型关联。CVD 和全因死亡率的阈值分别为 8.84 和 9.05。

13e40d9fe2f97cc42207d1bd72fefc7f.png

摘要与主要结果

一、摘要

背景:甘油三酯-葡萄糖 (TyG) 指数与糖尿病或糖尿病前期心血管疾病 (CVD) 患者死亡率之间的关联尚不清楚。本研究旨在探讨美国成人糖尿病或糖尿病前期 CVD 患者基线 TyG 指数与全因死亡率和心血管 (CV) 死亡率之间的关系。

方法:本研究从全国健康与营养检查调查(2001-2018)中招募了1072例患有糖尿病或糖尿病前期的心血管疾病患者。死亡率结果是通过与截至 2019 年 12 月 31 日的国家死亡指数 (NDI) 记录相关联来确定的。构建多因素Cox比例风险模型,分析探讨基线TyG指数与死亡率的相关性。利用受限三次样条探索非线性相关性,构建拐点两侧的两段Cox比例风险模型。

结果:在7541人年的随访中,共记录了461例全因死亡和154例CVD相关死亡。限制三次样条显示,糖尿病或糖尿病前期CVD患者的基线TyG指数与全因和CVD死亡率之间存在U型关联。具体而言,基线TyG指数低于阈值(全因死亡率的TyG指数<9.05,CVD死亡率的<8.84)与死亡率呈负相关(全因死亡率HR 0.47,95%CI=0.27-0.81,CVD死亡率HR 0.25,95%CI=0.07-0.89)。相比之下,基线TyG指数高于阈值(全因死亡率TyG指数>9.05,CVD死亡率>8.84)与死亡率呈正相关(HR 1.42,95%CI = 1.02-1.99CVD 死亡率的全因死亡率和 HR 1.77,95% CI = 1.08-2.91)。

结论:在美国人群中,心血管疾病基线TyG指数与心血管疾病合并糖尿病或糖尿病前期患者的全因死亡率之间存在U型关联。CVD 和全因死亡率的阈值分别为 8.84 和 9.05。

二、研究结果

1. 研究人群的基线资料

表 1 显示了按 TyG 指数四分位数分层的队列研究参与者 (n=1072) 的基线特征。参与者的平均年龄为66.54岁,其中男性占59.33%。入组患者的平均TyG指数为9.03±0.03。

1170411f9c90782e5a0e61a8a4a42340.png

根据 TyG 指数的四分位数,基线时的实验室特征如表 2 所示。与最低四分位数的参与者相比,TyG 指数较高的参与者更有可能年轻、墨西哥人和肥胖。此外,各组之间的生化指标存在显着差异,最高四分位数的参与者表现出显着差异,与第一个四分位数相比,HbA1c、LDL-C、TC、TG、GGT、ALT、FINS 和 FPG 水平较高。

a8ee8b3c6e685d59f98ae2790b0a6036.png

2.建立Cox比例风险模型

表3列出了随访期间发生的461例全因死亡和154例CVD相关死亡。

我们构建了三个 Cox 回归模型来研究 TyG 指数水平与死亡风险之间的独立关联。在模型 3 中调整年龄、性别、种族、BMI、吸烟、饮酒、教育、高血压和家庭收入贫困比后,多变量调整风险比 (HR) 和 95%,从最低到最高 TyG 指数四分位数(6.80–8.56、8.56–8.96、8.96–9.40 和 9.40-12.55)。全因死亡率以及置信区间 (CI) 分别为 1.00(参考)、0.65(0.45、0.93)、0.84(0.62、1.14)、 1.3(0.73、1.26)(P=0.623);CVD死亡率以及置信区间 (CI) 分别为1.00(参考值)、0.49(0.25、0.97)、1.10(0.63、1.90)和1.30(0.73、2.33)(P=0.068)。

0eb5409e2613e47971ffe949d429da60.png

3.非线性关系检测

由于之前的多变量分析表明基线 TyG 指数与全因死亡率和 CVD 死亡率之间存在非线性关系,因此我们采用具有限制性立方样条图和平滑曲线拟合的 Cox 比例风险回归模型来进一步研究相关性。有趣的是,调整后的平滑图显示 TyG 指数与全因死亡率(图 2A)和 CVD 死亡率(图 2B)之间呈 U 形关联。

4cbb7927bf3ccf31f97345da505a92be.png

我们使用标准 Cox 比例风险回归模型和两段 Cox 比例风险回归模型拟合了基线 TyG 指数和死亡率之间的关联。基于两段 Cox 比例风险回归模型,我们确定全因死亡率和 CVD 死亡率的拐点分别为 9.05 和 8.84(对数似然比的 P 值均<0.05)(表 4)。

bbfbd3a723aa8dc93f080c7fad314e39.png

我们分别研究了糖尿病和糖尿病前期人群。结果显示,TyG指数与糖尿病CVD患者的全因死亡率和CVD死亡率之间仍存在U型关系(均为非线性P<0.01)。糖尿病前期CVD患者TyG指数与全因死亡率近似呈U型关系(非线性P=0.28),与CVD死亡率呈近似线性关系(非线性P=0.95)(图3)。

193255c35af81697f62cc6302fb3dfd1.png

4.亚组分析

与较低 TyG 指数(全因死亡率 <9.05,CVD 死亡率 <8.849.05)相比,较高 TyG 指数(全因死亡率≥9.05,CVD 死亡率 ≥8.84)在 CVD 患者中具有生存优势。如表 5 和 6 所示,基于年龄、性别、种族和 BMI 的各个亚组中糖尿病或糖尿病前期的情况是一致的。基线 TyG 指数和分层变量之间没有显着的交互作用。

d06670de871ed4be3e58a546f7cbf559.png

02b8ff9b2f5f7a20d2ac75d4caf79229.png

设计与统计学方法

一、研究设计

P本研究从全国健康与营养检查调查(2001-2018)中招募了1072例患有糖尿病或糖尿病前期的心血管疾病患者。

I:甘油三酯-葡萄糖 (TyG) 指数。

O:全因死亡率和心血管 (CV) 死亡率。

S:队列研究。

二、统计方法

1.描述基线以及差异性分析,使用R软件(版本4.2.1;https://www.r-project.org)进行统计分析。由于 NHANES 的抽样设计复杂,按照分析 NHANES 数据的要求,样本权重、聚类和分层被纳入所有分析中 [17]。根据 TyG 指数的四分位数 (Q1-Q4),研究参与者被分为四组。连续变量总结为平均值和标准差(SD),而分类变量则表示为频率和百分比。使用单向方差分析(针对连续变量)和皮尔逊卡方检验(针对分类变量)对 TyG 四分位组之间的基线特征进行比较。

bd332a75a21578daf40df8033dd22922.png

2.建立逻辑回归模型并对缺失值多重插补,在整个随访期间计算每个 TyG 四分位数组的全因死亡率和 CVD 死亡率的发生率。为了评估 TyG 指数的独立预测价值,我们开发了多元 Cox 比例风险回归模型,其中包括三个模型来控制混杂因素。模型1未调整,模型2调整了年龄、种族和性别,模型3调整了年龄、性别、种族、BMI、吸烟、饮酒、教育、高血压和家庭收入贫困比。对缺失值的协变量进行多重插补。

aaf38499eb3dc0dc54e3099507caa113.png

3.绘制限制性立方样条图,进行非线性分析,为了研究 TyG 指数与死亡率之间的关系,采用限制性立方样条图和平滑曲线拟合(惩罚样条法)的 Cox 比例风险回归模型。如果关系是非线性的,我们通过尝试所有可能的值并选择具有最高可能性的阈值来估计阈值。我们在拐点两侧使用两分段Cox比例风险模型来研究TyG指数与全因死亡和CVD死亡风险之间的关联。

dac85afec98e9c9df41d1c23dabbbeae.png

b35f09cb14af4da7e8efe2498c6c8ce7.png

4.亚组分析以及补充说明,根据性别、年龄(< 60 岁或≥60 岁)、BMI(<25.00 或≥25.00)和种族(白人、黑人、墨西哥人或其他)进行分层分析。小于 0.05 的 p 值被认为具有统计学差异。

c5ead32c8ff741368d314e4661fbab96.png

小感悟

本期介绍的是一区文章,9.3分。

这项研究为队列研究,研究方法如下,

  • 一开始,先描述样本并进行差异性分析,

  • 再建立多样的回归模型,此处建立逻辑回归研究死亡率结局。建立未校正,部分校正以及完全校正三阶段模型。

  • 绘制限制性立方样条图找拐点,进行亚组分析加强结论稳健性。

这篇文章研究方法不突出,赢在了研究周期长以及死亡率指标的应用,nhanes能做队列的也就死亡数据了。这篇文章为我国学者写作,个人认为亮点在于发现了U型趋势并加以论证。研究方法有许多值得学习的优点,如果各位也想学习死亡率研究,欢迎留言讨论。

我们将召开孟德尔随机化方法初级班、高级班的课程,欢迎各位参加

2023年“孟德尔随机化方法快速撰写SCI论文” 直播课,11.18-11.19.

本公众提供各种科研服务了!

一、课程培训

2022年以来,我们召集了一批富有经验的高校专业队伍,着手举行短期统计课程培训班,包括R语言、meta分析、临床预测模型、真实世界临床研究、问卷与量表分析、医学统计与SPSS、临床试验数据分析、重复测量资料分析、nhanes、孟德尔随机化等10门课。如果您有需求,不妨点击查看:

发表文章后退款!2023年郑老师团队多门科研统计直播课程,欢迎报名

二、统计服务

为团队发展,我们将与各位朋友合作共赢,本团队将开展统计分析服务,帮忙进行临床科研。欢迎了解详情:

医学统计服务| 医公共数据库论文一对一指导

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值