上周我们就在Nhanes数据库挖到了一个新思路-癌症幸存者发文,中国学者就用这个思路发一区,IF=9.3。
往期回顾:
NHANES能分析癌症吗?中国学者用癌症幸存者发文一区 IF=9.3
今天,我们又找到了一篇用癌症幸存者发SCI的文章,川大华西医院的学者用Nhanes数据库探索体育活动和膳食质量对癌症幸存者的预后影响,发文二区(IF=12.5)!
2024年6月14日,川大华西医院的学者用NHANES数据库,在期刊《International Journal of Surgery》(医学二区,最新IF=12.5)发表题为:“Joint association of physical activity and dietaryquality with survival among US cancer survivors: apopulation-based cohort study”的研究论文,旨在探究体育活动(PA)和膳食质量(DQ)对美国癌症幸存者生存的单独和联合预后影响。
本公众号回复“ 原文”即可获得文献PDF等资料,如果需要Nhanes公共数据库挖掘学习与指导,请联系郑老师团队,详情可添加助教微信:aq566665 |
虽然在过去几十年内,癌症患者的生存率逐渐提高,但是癌症幸存者的预期寿命还是比未患有癌症的人群短。众所周知,充足的体力活动和健康合理的膳食可以降低患病风险,改善身体素质。为探究充足的体育活动和健康合理的膳食是否对癌症幸存者产生积极作用,研究团队进行了本项研究。
主要研究结果
1.研究设计
本研究采用了美国国家健康和营养调查(NHANES)2007-2018年的数据,最终纳入了3,007名符合条件的癌症幸存者。
体育活动(PA)总时间: 通过全球体育活动问卷(GPAQ)自我报告得出。
将PA分为三个水平:不活动(0 MET-min/周)、不充分活动(1-599 MET-min/周)和充分活动(≥600 MET-min/周)。
此外,为了检验PA与癌症幸存者死亡风险的剂量-反应关系,研究团队根据先前的研究建立了PA的以下5个类别:0,1 -599,600- 1999,2000-3999和≥4000 MET-min/周
膳食质量(DQ):来自于对访谈前一天(从午夜到午夜)所消费的所有食品和饮料的两次24小时召回所获得的数据,时间间隔为3到10天。并通过健康饮食指数-2015(HEI-2015)评估DQ。
HEI-2015的总分从0到100,得分越高,总体DQ得分越高。平均得分超过60分的参与者被认为遵守了膳食指南,研究团队将DQ分为两个级别:不合格(<60)和合格(≥60)。
癌症诊断:来自NHANES数据库的“医疗条件”部分,并进一步将肿瘤类型分为9类。
包括:妇科肿瘤(乳腺、宫颈、卵巢和子宫)、男性泌尿系统肿瘤(前列腺和睾丸)、胃肠道肿瘤(结肠、食管、胆囊、肝细胞、胰腺、直肠和胃)、呼吸系统肿瘤(肺和喉/气管)、头颈部肿瘤(喉/气管、口腔/舌/唇、甲状腺)、泌尿系统肿瘤(膀胱和肾脏)、血液恶性肿瘤(白血病、淋巴瘤和其他血癌)、皮肤癌(黑色素瘤和非黑色素瘤)和其他类型的癌症(骨、脑、神经系统和软组织)。
死亡数据:随访人群的死亡数据来自NHANES公共使用关联死亡档案,该档案通过概率匹配算法与国家死亡指数(NDI)相关联。
2.基线数据
在纳入的3,007名癌症幸存者中,加权中位年龄65岁,加权女性比例56.2%。
总体而言,57.1%(1,538/3,007)的研究对象达到了PA推荐值(≥600 met -min/周),28.8%(920/3,007)的研究对象DQ得分≥60分。
不活跃PA (0 MET-min/week)的参与者更有可能是老年人、女性、非西班牙裔白人、已婚或与伴侣同居、肥胖、中等家庭贫困收入比、高血压、高脂血症、睡眠时间较短、坐着时间较长、DQ不合格(<60)。
此外,随着PA的增加,癌症幸存者的DQ水平有显著增加的趋势(P <0.001)。
3.使用Cox比例风险回归模型评估PA和DQ与死亡率的单独关联
在长达69个月的随访中位期内,730人死亡,其中255人死于癌症,155人死于心血管疾病,320人死于其他原因。
完全调整后的模型显示,与其他组相比,PA充足(≥600 MEI-min/周)的癌症幸存者全因、癌症和非癌症死亡率的风险最低。
同时,DQ合格(260)的癌症幸存者的全因风险和非癌症死亡率低于DQ不合格(<60)的幸存者。
模型1:未进行调整;
模型2:根据年龄、性别和种族进行调整;
模型3:调整了年龄、性别、种族、文化程度、婚姻状况、家庭收入贫困率、BMI、吸烟、饮酒、高血压、高脂血症、糖尿病、心血管疾病、睡眠时间、久坐时间等因素。
*P值<0.05为显著性
4.使用多变量Cox比例风险回归模型评估PA和DQ与死亡率的联合关系
在联合分析中,活性PA和合格DQ的组合与最低的全因、癌症和非癌症死亡率风险相关。
具体而言,与完全调整模型中的其他组相比,具有足够活性PA(2600 MET-min/周)和合格DQ(260)的癌症幸存者的全因死亡率风险最低(HR 0.45,95% CI 0.35-0.59);
同时,与其他组相比,具有活动性PA(>0MET-min/周)和合格DQ(≥60)的癌症幸存者的癌症和非癌症死亡率风险最低。
此外,KM曲线显示,具有足够活性PA(2600 MET-min/周)和合格DQ(260)的癌症幸存者显示出显著最高的总体生存概率;
而与其他组相比,具有活动性PA(>0 MET-min/周)和合格DQ(260)的组显示出最高的癌症特异性和非癌症特异性生存率(均p<0.0001)。
在敏感性分析中,在排除24个月内死亡的参与者后,这种关联仍然很强。
5.亚组分析
研究团队在不同癌症幸存者中对主要结局进行了亚组分析,研究结果如下:
在性别亚组分析中,PA与死亡率之间的相关性在男性和女性中是一致的,而DQ与死亡率之间负相关性在男性中更为明显。
在年龄亚组分析中,活动PA和合格DQ对65岁及以上癌症幸存者的积极影响大于对65岁以下幸存者的积极作用,PA和DQ的联合分析结果与上述保持一致。
同时,研究团队在不同癌症类型进行了亚组分析,探讨了PA和DQ在不同癌症类型中的作用:
具体而言,PA和DQ的单独和组合的积极作用与肥胖相关和非肥胖相关癌症的生存率显著相关。
在患有妇科肿瘤、男性泌尿系统肿瘤、呼吸系统肿瘤、血液系统恶性肿瘤、皮肤癌和其他癌症的幸存者中,活性PA和合格DQ对生存率的联合积极作用显著。
相反,在患有胃肠道肿瘤、头颈部肿窗和泌尿系统肿瘤的幸存者中没有观察到类似的关联。
6.PA与死亡率的剂量反应关系
如下表所示,虽然较高水平的PA预测癌症幸存者的死亡率降低,但对于所有死亡率结果,在2000-3999 METmin/周的PA水平下获得的收益最好。
具体而言,与其他组相比,PA水平为2000-3999 MET-min/周的癌症幸存者的全因死亡率、癌症死亡率和非癌症死亡率风险最低。
统计学方法
本文的研究思路非常清晰,无论是研究方法还是研究结果,都值得我们学习:
应用Cox比例风险回归模型,分别确定PA和DQ与癌症幸存者全因死亡率、癌症死亡率和非癌症死亡率的关系;
为了研究联合效应,使用多变量Cox比例风险回归模型来估计死亡率;
对先前列出的几种肿瘤类型进行亚组分析;
此外,利用Kaplan-Meier(KM)曲线显示了具有不同PA-DQ表型的癌症幸存者的不同生存概率;
使用多种插补方法对数据缺失的变量进行插补;
最后通过排除在随访的前24个月内死亡的参与者来进行敏感性分析,以最大限度地减少反向因果关系的潜在影响;
所有统计分析均使用R软件(4.3.2版)进行。双尾P值<0.05被认为具有统计学意义。
本公众号回复“ 原文”即可获得文献PDF等资料,如果需要Nhanes公共数据库挖掘学习与指导,请联系郑老师团队,详情可添加助教微信: |
后 记
很多人认为,生病了就该好好休息。但事实证明,癌症幸存者“宜动不宜静”。又余力的患者可以先从简单的运动,例如散步或者骑自行车开始,慢慢增加运动强度,改善身体机能,提高幸福感。
本文的统计学非常简单,先用Cox比例风险回归模型分析独立和联合关联,再进行亚组分析,同时利用Kaplan-Meier(KM)曲线显示了具有不同PA-DQ表型的癌症幸存者的不同生存概率,最后进行敏感性分析评估结局的稳健性。
如果你也想用NHANES数据库发文,欢迎来郑老师的Nhanes课程!不做实验发表SCI论文,手把手指导,不怕零基础!让你学会统计学知识,论文快速出稿!
本公众提供各种科研服务了!
一、课程培训 2022年以来,我们召集了一批富有经验的高校专业队伍,着手举行短期统计课程培训班,包括R语言、meta分析、临床预测模型、真实世界临床研究、问卷与量表分析、医学统计与SPSS、临床试验数据分析、重复测量资料分析、nhanes、孟德尔随机化等10余门课。如果您有需求,不妨点击查看: 二、数据分析服务 浙江中医药大学郑老师团队接单各项医学研究数据分析的服务,提供高质量统计分析报告。有兴趣了解一下详情: |