一区!孟德尔随机化+四个数据库+可成药基因发高分SCI| 孟德尔随机化周报(11.24-11.30)...

de1ec9bc9eeeae3e64861ebca6c7a84b.png

孟德尔随机化,Mendelian Randomization,简写为MR,是一种在流行病学领域应用广泛的一 种实验设计方法,利用公开数据库就能轻装上阵写文章,甚至是高质量的论文。

0281352c7b2aeb0418b30234750ada8a.png

通过PubMed数据库“ Mendelian randomization”检索发现,11.24-11.30共发表71相关主题论文,其中共6医学1区,17篇医学2区文章,部分文章介绍如下。

中国学者:

1.国学者文章介绍(一)

c622cf1fc87f16925627c267bb2371fc.jpeg

文章题目:揭示乳腺癌中的免疫细胞相关基因:基于基于汇总数据的孟德尔随机分析和共定位研究

研究目的:观乳腺癌是全球女性中最普遍的癌症形式,包括需要不同治疗方法的各种亚型。肿瘤微环境和免疫反应在乳腺癌的发生发展中具有至关重要的意义。然而,关于乳腺癌内基因 - 特异性免疫细胞的证据很少。

研究方法:我们利用基于汇总数据的孟德尔随机化 (SMR) 来识别与乳腺癌相关的基因,方法是利用 14 种不同免疫细胞类型的表达数量性状位点 (eQTL) 数据集和整体乳腺癌及其亚型的全基因组关联研究 (GWAS)。此外,进行了共定位分析以评估在 SMR 分析中观察到的关联是否受相同因果变异的影响。采用复制分析和批量 RNA 测序 (bulkRNA-seq) 分析来验证有前景的免疫基因作为潜在的药物靶点。

研究结果:在校正错误发现率后,我们发现 9 种免疫细胞类型中共有 17 个基因与整体乳腺癌及其亚型显著相关。基因 KCNN4 、 L3MBTL3 、 ZBTB38 、 MDM4 和 TNFSF10 在整个乳腺癌及其亚型中被鉴定出来。共定位分析为支持这些关联提供了强有力的证据。值得注意的是,非经典 MONOcytes (MONOnc) 中的 KCNN4 基因通过复制分析和 bulkRNA-seq 分析进一步验证。

结论:总之,我们的研究揭示了与乳腺癌相关的不同免疫细胞中的一系列基因。非经典单核细胞 (MONOnc) 中的 KCNN4 基因与整体乳腺癌及其亚型呈负相关,这被确定为乳腺癌的潜在药物靶点,为治疗干预开辟了新的途径。

51e698e9a9503ff6e94cd453d021d373.png

2.国学者文章介绍(二)

4294c7de1bca2e0facf9459e4d455856.jpeg

文章题目:鉴定介导吸烟与原发性高血压之间因果关系的新型蛋白质:一项孟德尔随机化研究

研究目的:吸烟是高血压的一个因素。我们旨在揭示介导吸烟与高血压关系的新型血浆蛋白,并在孟德尔随机化设计的基础上确定高血压的潜在药物靶点。

研究方法:吸烟数据选自全基因组关联研究和酒精和尼古丁使用测序联盟进行的最大规模的全基因组关联研究荟萃分析。血浆蛋白的数据选自 deCODE Health 研究和英国生物样本库制药蛋白质组学项目。高血压数据提取自 FinnGen 研究。此外,还进行了蛋白质组范围的孟德尔随机化和共定位分析、2 步孟德尔随机化、基因功能和网络预测以及成药性评估。

研究结果:我们最终确定了 8 种蛋白 (ANXA4 [膜联蛋白 A4]、DLK1 [蛋白 δ 同源物 1]、KLB [β-klotho]、MMP8 [基质金属肽酶 8]、PLAT [组织型纤溶酶原激活剂]、POSTN [骨膜蛋白]、SAT2 [噻赖氨酸 N-ε-乙酰转移酶] 和 IFNLR1 [干扰素 λ 受体 1])介导吸烟与高血压的关系。PLAT 和 IFNLR1 被鉴定参与补体和凝血级联反应以及 Janus 激酶/信号转导和转录信号激活因子通路。ANXA4 、 KLB 、 MMP8 、 PLAT 和 IFNLR1 具有成药性。此外,IFNLR1 具有遗传共定位的有力证据,因为 IFNLR1 的 H4 后验概率为 91.3%。

结论: 本研究确定了介导吸烟与原发性高血压之间因果关系的 8 种蛋白质。靶向 IFNLR1 的干扰素 λ 受体激动剂可能为治疗高血压开辟一条新途径。我们的发现为高血压的蛋白质发病机制提供了新的见解,并更好地指导吸烟者高血压的预防和治疗。

249d9e1a90d7f2ec83a74ea545422d38.png

3.国学者文章介绍(三)

1ef9aa158c6860ef7f8f1e35987a45b9.png

文章题目:多囊卵巢综合征和乳腺癌的共同遗传景观:ER + 乳腺癌收敛,而不是 ER- 乳腺癌

研究目的:反多囊卵巢综合征 (PCOS) 和乳腺癌 (BC) 之间的临床高合并症已被广泛报道。然而,关于它们共同的遗传基础和潜在机制的知识有限。

研究方法:利用迄今为止最大的全基因组关联研究 (GWAS) 的汇总统计数据,我们对 PCOS 和 BC 进行了全面的全基因组交叉性状分析。采用了多种遗传统计方法来揭示潜在的共同遗传原因。

研究结果 : 我们的分析揭示了三个性状对之间的遗传重叠。将基因组划分为 2,495 个独立区域后,我们确定了两个位点,chr8:75,011,700-76,295,483 和 chr17:6,305,079-7,264,458,具有显着的局部遗传相关性。在复合零假设下的多效性分析确定了三个性状对中的 1,183 个显著的多效性单核苷酸多态性 (SNP)。FUMA 绘制了 26 个多效性基因座,其中 16q12.2 和 6q25.1 区域在所有三个性状对中重复,而 COLOC 检测到三个具有共定位证据的基因座。基于基因的分析确定了 23 个独特的候选多效性基因,包括所有性状对共享的 FTO,以及两个性状对中的 SER1 、 RALB 和其他基因。通路富集分析进一步突出了关键的生物通路,主要涉及重要的生物通路是调节自噬的代谢、细胞分解代谢过程的调节和分解代谢过程的正调控。潜在遗传性混杂因素孟德尔随机化 (LHC-MR) 支持 PCOS 与 BCALL 和 ERPBC 之间的正因果关系,但与 ERNBC 无关。

eQTL (expression Quantitative Trait Loci)孟德尔随机化(Mendelian Randomization, MR) 是两种不同的但互补的研究方法,广泛应用于基因组学和流行病学领域。 ### eQTL研究 eQTL分析旨在识别与特定组织或细胞类型的基因表达水平相关的遗传变异。这些变异常被称为表达数量性状位点(eQTLs),它们可以揭示哪些DNA域可能调控附近或者远距离的基因表达。这种关联可以帮助理解疾病机制以及药物靶标的潜在作用模式。 ### 孟德尔随机化 孟德尔随机化种利用遗传变异作为自然实验来评估暴露因素(例如生活方式、环境因子等)对健康结果因果效应的方法。这种方法依赖于两个关键假设:是所选遗传标记只通过指定中介路径影响结局;二是不存在混杂因素同时影响遗传标记和其他未测量变量之间的关系。当满足以上条件时,MR能够提供强有力的证据支持观察性研究现,并有助于指导公共政策制定及临床实践指南的展方向。 ### 结合两者进行基因关联分析 结合eQTL数据与孟德尔随机化的策略可以在分子层面探索复杂疾病的病因。具体来说,可以通过以下几种方式进行整合: - **两阶段最小二乘法(TSLS)**: 这种统计技术可用于估计由SNP定义的风险因素对于目标特征的影响程度; - **多效性调整**: 考虑到某些SNPs可能会间接地经由其他途径而非直接改变mRNA水平而挥作用,因此需要采用适当的校正措施减少偏差; - **全转录组范围内的扫描(Wide Transcriptional Scan)**: 对整个基因组范围内所有已知基因进行全面筛查寻找潜在的作用节点; - **功能富集测试(Functional Enrichment Testing)**: 探讨那些表现出显著性的通路是否集中出现在某类生物学过程中从而加深对其背后原理的理解。 ### 生物信息学工具 为了实现上述目的,研究人员通常会借助系列生物信息平台和技术手段来进行数据分析处理工作,包括但不限于: - **GTEx Portal** : 提供了来自不同人体器官样本的大规模eQTL数据库资源; - **TWAS (Transcriptome-Wide Association Study tools)** : 如FUSION TWAS, S-PrediXcan 等软件包用于预测个体间基因表达差异并将其映射至表型上; - **MRndroid / TwoSampleMR R package** : 支持执行大规模自动化MR流程计算任务; - **Bioconductor project packages** : 包含多种适用于高维基因组数据管理加工的专业级算法库。 综上所述,通过巧妙运用eQTL研究成果配合先进的孟德尔随机化框架,科学家们得以更深入地解析人类遗传结构背后的秘密,进而推动精准医疗时代的到来。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值