几种简单的控制算法对比【一看就会】【PID,LQR,MPC】

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档


前言

好久不见。
上一篇文章详细介绍了三种控制算法的原理,让大家有了个基础的认识,但是实际过程中,如何根据实际工况进行使用,以及三种算法的各自优缺点,我们在这篇文章中总结。

一、各自特点

PID
优点:
最简单的算法,应用最广适应性最强的算法。
不需要任何模型,纯靠比例-积分-微分进行矫正。
缺点:
复杂的工况,非线性系统等难以解决。
LQR
线性二次最优控制。
需要精确的系统线性模型。(在这里插入图片描述

通过数学优化计算成本函数,得到控制策略也就是控制增益矩阵。
不直接处理系统约束。(整个计算系统中没有约束直接参与)
只适用于线性系统。

MPC&NMPC
优点:
需要事先得到系统的模型,可以是线性也可以非线性。
能够处理系统的约束。(在优化模型中使用)
适用于复杂场景模型和非线性问题
缺点:
计算成本很高,需要滚动优化

二、应用场景和工况

PID
简单工况。
但输入输出
电机控制。
遇事不决,就用PID
在较为简答并且固定的工况下,不断调整三个系数,总能得到一个非常好的效果。
如果你毕设时,用自己创造的算法得不到一组特别好的实验数据时,可以用PID试一下。

LQR
适合模型精确的线性系统。
多输入输出
适用于机器人控制,机械臂控制。
算力要求较MPC小,且可以使用离线模型。
Apollo中的横向控制采用了LQR模型。
MPC
多输入多输出
多用于复杂,非线性系统,且受约束严格,比如自动驾驶领域,无人机领域等。


总结

先简单总结了一下,关于三种算法的相关特性和选择以及适用场景,我会在本篇文章中持续更新。

PIDLQRMPC控制系统中常用的三种算法,它们都有自己的优缺点,适用于不同的控制场景。 1. PID 控制 PID 控制是最常见的控制算法,该算法通过对系统输出与期望输入之间的误差进行比较,计算出控制量来调整系统的输出。PID 控制算法简单易懂,可以应用于很多控制场景,并且很容易实现。 然而,PID 控制算法的缺点也很明显,它只能根据当前的误差来进行调整,对于未来的变化无法进行预测,因此 PID 控制很难应对复杂的非线性系统和时变系统。 2. LQR 控制 LQR 控制种基于状态空间模型的线性控制算法,该算法通过最小化系统状态与期望状态之间的二次误差来设计控制器。相比于 PID 控制LQR 控制可以应对更加复杂的系统,并且可以进行状态估计和状态反馈控制。 然而,LQR 控制也有自己的缺点,它只适用于线性系统,对于非线性系统的控制效果不佳。 3. MPC 控制 MPC 控制种基于模型预测的控制算法,该算法通过对未来段时间内系统状态的预测来计算出最优的控制量。MPC 控制算法可以应对非线性系统和时变系统,并且可以对控制输出进行约束,保证系统的安全性。 MPC 控制算法也有缺点,它需要系统模型的准确性和高计算能力,因此实现起来比较困难。 总的来说,PID 控制算法适用于简单控制场景,LQR 控制算法适用于线性系统,MPC 控制算法适用于复杂的非线性系统和时变系统。在实际应用中,需要根据具体情况选择适合的控制算法
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不断学习加努力

俺会努力的,一直免费的!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值