提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档
前言
好久不见。
上一篇文章详细介绍了三种控制算法的原理,让大家有了个基础的认识,但是实际过程中,如何根据实际工况进行使用,以及三种算法的各自优缺点,我们在这篇文章中总结。
一、各自特点
PID
优点:
最简单的算法,应用最广适应性最强的算法。
不需要任何模型,纯靠比例-积分-微分进行矫正。
缺点:
复杂的工况,非线性系统等难以解决。
LQR
线性二次最优控制。
需要精确的系统线性模型。(
)
通过数学优化计算成本函数,得到控制策略也就是控制增益矩阵。
不直接处理系统约束。(整个计算系统中没有约束直接参与)
只适用于线性系统。
MPC&NMPC
优点:
需要事先得到系统的模型,可以是线性也可以非线性。
能够处理系统的约束。(在优化模型中使用)
适用于复杂场景模型和非线性问题
缺点:
计算成本很高,需要滚动优化
二、应用场景和工况
PID
简单工况。
但输入输出
电机控制。
遇事不决,就用PID
在较为简答并且固定的工况下,不断调整三个系数,总能得到一个非常好的效果。
如果你毕设时,用自己创造的算法得不到一组特别好的实验数据时,可以用PID试一下。
LQR
适合模型精确的线性系统。
多输入输出
适用于机器人控制,机械臂控制。
算力要求较MPC小,且可以使用离线模型。
Apollo中的横向控制采用了LQR模型。
MPC
多输入多输出
多用于复杂,非线性系统,且受约束严格,比如自动驾驶领域,无人机领域等。
总结
先简单总结了一下,关于三种算法的相关特性和选择以及适用场景,我会在本篇文章中持续更新。