首个对LLMs应用于机器人任务中的量化研究

论文标题:

Neural Scaling Laws for Embodied AI

论文作者:

Sebastian Sartor, Neil Thompson

导读:

大模型研究愈发火热,大语言模型的Neural Scaling Laws(神经标度律/神经缩放定律),即深度学习的误差随着训练集大小、模型大小或两者的幂数而下降也随之变得十分重要。本文是首个对具身智能(embodied AI)基础模型(RFMs)和在机器人任务中使用大语言模型(LLMs)的标度律(scaling laws)进行量化研究的工作。通过对198篇论文进行研究,分析了计算能力、模型大小和训练数据量等关键因素如何影响各种机器人任务的模型性能。研究结果证实,标度律适用于机器人领域的RFMs和LLMs,随着资源的增加,性能也会持续提高。©️【深蓝AI】编译

1. 研究背景

近年来,机器人领域取得了显著进步,特别是在可适应、通用型机器人系统的发展方面。然而,对于如何有效扩展这些系统的理解仍然不足。本文作者通过研究具身智能(embodied AI)的标度律(scaling laws)来填补这一空缺领域,主要聚焦于模型大小、训练数据量和计算资源如何影响机器人基础模型(RFM)和用于机器人的大语言模型(LLM)的性能。该研究将探究在语言和视觉等其他领域观察到的标度律是否适用于具身智能,并确定RFM和机器人LLM的特征幂律系数。此外,本文还将分析这些系数在熟悉和新颖任务间的差异,以及RFM和机器人LLM是否出现了与其他领域相似的潜在能力。

近年来深度学习的显著进步主要由scaling推动-即在增加的计算资源下训练更大的神经网络和更多的数据。这种现象可用神经网络scaling定律来描述。这一基础概念最初由JonathanRosenfeld等研究人员以及2020年的OpenAI团队提出和形式化。这一理论还建立在"痛苦教训"的基础之上,该原则强调可扩展计算在实现卓越性能方面的价值。

神经标度律(Neural Scaling Laws)在各种应用中已经证明了它的实用性。它们不仅为理解神经网络架构和数据分布如何影响性能提供了框架,而且在数据稀缺领域规划样本量方面也非常有益。总的来说,标度律有助于识别最优的scaling系数,允许基于给定输入预测性能,并估计实现所需性能的所需输入。

标度律已经在语言建模、视觉和强化学习等领域得到了广泛研究,遵循幂律函数。受transformer-based架构及其在zero-shot设置中高度泛化能力的启发,机器人研究人员开始将这些方法应用于embodied AI的物理世界,设想通用机器人并最终实现Moravec‘s悖论的终结。

传统的机器人学习方法需要为每个应用程序、机器人和环境训练单独的模型,涉及多模块系统架构。现代方法使用单一的神经网络,可以跨各种机器人、任务和环境有效地进行自适应。这种被称为RFMs的大型通用预训练网络简化了适应和实施。另一个趋势是将在互联网规模数据上训练的基础模型(如LLM和VLM)集成到机器人控制中,以提高机器人理解自然语言命令和视觉解释任务的能力。这连接了高层推理和低层控制,增强了泛化和语义推理,使机器人能够理解和生成自然语言,同时完成很多特殊的任务。

尽管取得了这些进步,但具身智能中的标度律仍然未被探索。先前的研究暗示可能存在scaling原理,但尚未进行全面量化。此外,之前的scaling laws研究的一个弱点是,它关注的指标并不直接转化为现实世界任务性能。这点特别重要,因为确定和量化embodied AI背景下的scaling laws,为开发通用机器人系统提供了关键框架。它使研究人员能够预测性能结果、更有效地分配资源,并确保在任务间的可适应性。通过了解这些原理,通过简化实验、降低成本并提高机器人研究的环境可持续性。

本研究旨在通过确定embodied AI的scaling laws来填补这一空白。

具体来说,作者将研究:

1)在计算、模型大小和数据方面,是否可以将观察到的其他领域(如语言和视觉)的标度律应用于RFM?

2)RFM和机器人中使用的LLM的特征幂律系数是什么,它们如何比较?

3)这些幂律系数在模型在训练期间见过的任务和全新(未见过)任务之间如何变化?

4)RFM和LLM是否在机器人中表现出与其他领域观察到的类似的潜在能力?

这项研究是首次全面量化embodied AI的scaling laws,满足了AI和机器人社区各利益相关方的需求。机器人研究人员可以利用这些见解来优化可适应、通用系统的设计和训练,大大减少成本和实验挑战,同时提高资源效率。理论AI研究人员将通过领域特定信息和跨领域比较,深入了解新兴行为和泛化原理。此外,该研究还可以帮助开发人员主动遵守AI法规,并协助决策者制定更有效的安全标准,类似于最近出台的标准。这种主动方法不仅可以降低风险,还可以增强社会对技术进步的准备,确保利用更强大的embodied AI系统的利益,同时最大限度地减少相关风险。大型科技公司和初创公司也可以从这些发现中获益,开发可扩展、多功能的系统,用于医疗、制造和灾难响应等领域。

2. 相关工作

2.1 具身智能(Embodied AI):

机器人领域长期面临可扩展性和成本挑战。最近出现了两种创新方法带来了范式转移。首先是使用统一的transformer-based的架构进行预训练,就像NLP中的GPT。其次是基础模型方法,将预训练的大型模型如GPT-4和PaLM-E集成到机器人中,利用其语义推理能力,将语言与物理动作相结合。这两种策略都面临数据稀缺、实时性能和从仿真到现实部署等挑战。

2.2 神经标定律(Neural Scaling Laws):

它是一种实证原理,描述模型质量与模型规模、训练数据规模和计算资源的关系。这些规律遵循幂律函数,通常以交叉熵为目标,这意味着随着模型规模和训练资源的增加,模型质量可以预期地得到改善。scaling laws已在语言模型、图像和视频生成、强化学习等机器学习领域得到广泛研究。随着模型的扩大,不仅在数量上有所改善,而且还表现出新的定性能力,被称为"突现"能力。尽管这些缩放模式提供了很高的性能改善可预测性,但这些扩展模型的具体能力通常仍然不可预测。数据约束也扮演了一定角色,限制了在固定规模数据上训练的大型模型的性能提升。scaling laws研究正在快速发展(如图1.a所示)。

在这里插入图片描述
图1|ScalingLaw与EmbodiedAI的研究增长趋势©️【深蓝AI】编译

2.3 具身智能的神经标定律(Neural Scaling Laws in Embodied AI):

虽然scaling laws已在语言模型和计算机视觉等领域得到研究,但在embodied AI领域的研究仍然有限。现有工作表明,计算能力、模型规模和数据输入方面的scaling现象在embodied AI中也成立,大型模型表现更好。对于机器人模型(RFMs),在计算能力、模型规模和数据方面都发现了这一现象。对于机器人中使用的大型语言模型(LLMs),发现更多参数的模型表现更好。与以交叉熵为衡量标准的生成任务AI不同,embodied AI主要依靠在模拟和现实(已知/未知)环境、物体和任务中的成功率来评判模型性能。通常,这些模型依赖于多模态数据输入,不同模型之间存在差异。

相比语言模型和计算机视觉等其他领域,研究embodied AI和机器人中的scaling laws面临独特的挑战。仅仅增加模型规模并不能保证在现实世界中的性能改善,因为推理延迟会影响成功率,而边缘计算的限制也限制了模型规模的扩大。此外,更强大的边缘计算需要更多能量,这需要更大或更多的电池。此外,数据多样性也成为关键因素,正在开发涵盖各种任务和环境的数据集。此外,摩尔定律的失效要求转向算法效率,而不是依赖于指数级的计算能力扩展。

在这里插入图片描述
图2|研究的动态分析©️【深蓝AI】编译

你是一位專精於大型視覺語言模型 (Vision-Language Models, VLMs) 的研究專家,精通自然語言處理、計算機視覺、以及深度學習等相關領域。你具備批判性思維、擅長數據分析,並能基於嚴謹的學術研究提出獨到見解。 你的任務是針對 "大型視覺語言模型 (Vision-Language Models)" 進行一項全面且深入的研究,並產出一份結構化且具有洞察力的研究報告。報告應包含以下要點: **I. 研究目標:** * 對大型視覺語言模型 (VLMs) 的核心概念、架構、優缺點、應用場景、以及未來發展趨勢進行徹底分析。 * 提供關於如何有效地開發、訓練、評估和部署 VLM 的實用建議。 * 識別目前 VLM 領域面臨的挑戰和潛在的解決方案。 * 提供基於研究分析的獨到見解,並提出可行的未來研究方向和改進方案。 * 列出目前SOTA模型有哪些。 **II. 研究方法:** * **文獻回顧:** * **範圍:** 全面檢閱學術期刊、會議論文、預印本 (如 arXiv)、行業報告、技術部落格、以及相關書籍等。 * **重點:** 關注 VLM 的發展歷程、關鍵技術、benchmark 數據集、以及最新的研究進展。 * **語言:** 主要使用英文,必要時輔以其他語言 (例如中文),但最終分析基於英文文獻。 * **篩選標準:** 優先選擇具有影響力的期刊 (如 NeurIPS, ICML, CVPR, ICCV, ACL, EMNLP 等)、高引用論文、以及來自知名研究機構 (如 Google, Meta, OpenAI, Microsoft 等) 的成果。 * **數據分析:** * **目標:** 分析公開可用的 VLM 模型、數據集、以及評估指標。 * **方法:** 收集並整理 VLM 的性能數據、計算資源需求、以及訓練時間等信息。 * **工具:** 使用適當的數據分析工具 (例如 Python, Pandas, Matplotlib, Seaborn 等) 進行數據可視化和統計分析。 * **案例研究:** * **目標:** 深入分析 VLM 在不同應用場景下的實際應用案例。 * **場景:** 例如圖像描述 (image captioning)、視覺問答 (visual question answering)、文本生成圖像 (text-to-image generation)、視覺推理 (visual reasoning)、以及多模態機器人 (multimodal robotics) 等。 * **重點:** 評估 VLM 在這些場景下的表現、優缺點、以及潛在的改進方向。 **III. 報告結構:** 1. **緒論 (Introduction):** * 定義 VLM 的概念和重要性。 * 簡述 VLM 的發展歷程和主要里程碑。 * 概述 VLM 的主要應用場景。 * 明確本研究的目的和範圍。 2. **文獻回顧 (Literature Review):** * 詳細介紹 VLM 的核心架構和組件 * 分析不同 VLM 模型的優缺點 * 總結 VLM 常用的數據集和評估指標 * 討論 VLM 面臨的挑戰 (例如數據偏見、魯棒性、可解釋性等)。 3. **核心技術與方法 (Core Techniques and Methodologies):** * **多模態嵌入 (Multimodal Embedding):** 如何將視覺和語言信息轉換為統一的向量表示? * **跨模態交互 (Cross-modal Interaction):** 如何有效地融合視覺和語言信息? * **預訓練策略 (Pre-training Strategies):** 如何利用大規模數據進行 VLM 的預訓練? * **微調方法 (Fine-tuning Methods):** 如何針對特定任務對 VLM 進行微調? * **提示工程 (Prompt Engineering):** 如何設計有效的提示來引導 VLM 的行為? 4. **應用場景 (Applications):** * **圖像描述 (Image Captioning):** VLM 如何生成準確且生動的圖像描述? * **視覺問答 (Visual Question Answering):** VLM
03-17
<think>好的,我现在需要处理用户关于大型视觉语言模型(VLM)的查询。首先,用户希望了解VLM的核心概念、架构、优缺点、应用场景及未来趋势,还有开发、训练、评估和部署的实用建议。此外,用户还提到了具体的核心技术,比如多模态嵌入、跨模态交互,以及预训练和微调策略,应用案例如图像描述和视觉问答,挑战和未来潜力。 首先,我需要回忆一下VLM的基本知识。根据引用[^1][^3],VLM结合了视觉和文本信息,扩展了大型语言模型(LLMs)的能力,使其能够处理多模态任务。核心技术包括多模态嵌入,也就是如何将图像和文本映射到同一空间,比如CLIP模型。跨模态交互可能指的是注意力机制,比如Transformer中的跨模态注意力层,让视觉和文本特征能够交互。 然后,架构方面,VLM通常分为编码器-解码器结构,或者基于Transformer的统一架构。比如,Flamingo模型可能使用视觉编码器和文本解码器结合的方式。需要提到这些架构如何处理不同模态的数据。 预训练和微调策略方面,引用[^4]提到视频-语言数据集收集困难,但像HowTo100M这样的数据集被用于预训练。预训练任务可能包括图像-文本匹配、掩码语言建模等。微调部分则需要特定任务的数据,比如视觉问答数据集VQA。 应用案例方面,用户提到了图像描述和视觉问答,这些都是典型任务。比如,DALL-E生成图像,但这里可能更偏向理解和生成结合的模型,比如GPT-4V。需要举具体例子,如医疗图像分析、自动驾驶中的场景理解。 挑战部分,可能包括多模态对齐、计算资源、数据偏差等。未来趋势可能涉及更高效的架构、多任务学习、小样本学习等。 实用建议方面,开发时可能需要选择合适的预训练模型,处理多模态数据,使用混合精度训练,评估指标如BLEU、CIDEr,部署时考虑模型轻量化量化(引用[^2]提到llama.cpp的量化)。 需要确保回答结构清晰,分点列出,每个部分有核心技术、架构等的说明。同时,检查引用是否恰当,比如引用[^3]关于VLMs的能力,引用[^4]关于数据集挑战,引用[^2]关于部署的量化技术。 可能的问题:用户提到的预训练数据集如Kinetics400和HowTo100M在视频领域,但VLM主要处理图像和文本,是否需要区分?可能需要说明VLM通常处理图像-文本,但视频-文本是扩展,属于更复杂的任务。 还要注意用户要求使用中文,LaTeX公式的正确格式,行内用$,独立公式用$$。例如,多模态嵌入的公式可能需要写成$f_v(v)$和$f_t(t)$,然后投影到同一空间。 最后,生成相关问题时要围绕VLM的主题,比如核心技术、应用场景、挑战、评估指标等。</think>### 大型视觉语言模型(VLM)研究分析 #### 一、核心概念与架构 大型视觉语言模型(VLM)通过融合视觉和文本信息,实现跨模态理解与生成能力。其核心架构通常包含以下部分: 1. **多模态嵌入** 将图像和文本映射到统一语义空间,例如CLIP模型使用双编码器结构: $$f_v(v) \rightarrow \mathbb{R}^d, \quad f_t(t) \rightarrow \mathbb{R}^d$$ 其中$v$为图像,$t$为文本,$d$为嵌入维度[^1]。 2. **跨模态交互** 采用跨模态注意力机制(Cross-Modal Attention),例如Flamingo模型通过Perceiver Resampler将视觉特征注入语言模型解码层,实现图文动态交互。 3. **典型架构** - **单塔架构**:共享底层编码器(如ViLT) - **双塔架构**:独立视觉/文本编码器(如CLIP) - **混合架构**:视觉编码器+语言模型解码器(如MiniGPT-4) #### 二、优缺点分析 | **优势** | **挑战** | |----------|----------| | 零样本推理能力 | 多模态对齐困难 | | 支持复杂指令任务 | 计算资源需求高 | | 可扩展性强 | 数据噪声敏感性 | #### 三、预训练与微调策略 1. **预训练任务** - 图像-文本匹配(ITM) - 掩码语言建模(MLM) - 对比学习(如CLIP的对比损失$L_{cont}$) 2. **微调方法** - **Adapter Tuning**:冻结主干网络,插入轻量适配模块 - **Prompt Engineering**:设计任务提示词引导模型输出 #### 四、应用场景 1. **图像描述生成** 输入:$v$ → 输出:$P(t|v)$,如DALL·E 3的文本到图像生成 2. **视觉问答(VQA)** 输入:$(v, q)$ → 输出:$a$,应用在医疗影像分析(如病理报告生成) 3. **视频理解** 结合时序建模(如VideoLLM处理TVQA数据集[^4]) #### 五、当前挑战与未来趋势 1. **关键挑战** - 长尾数据分布问题 - 视频-文本细粒度对齐(需处理$10^3$帧级关联) - 多模态幻觉抑制 2. **未来方向** - **高效架构**:模型压缩技术(如面壁智能的MiniCPM-V量化方案) - **认知增强**:结合符号推理与神经网络 - **具身智能**:机器人视觉-语言-动作闭环 #### 六、开发与部署建议 1. **训练优化** - 使用混合精度训练(FP16/FP32) - 分布式数据并行(DDP) 2. **评估指标** | 任务类型 | 指标 | |----------|------| | 生成任务 | BLEU-4, CIDEr | | 检索任务 | Recall@K | 3. **部署实践** - 使用llama.cpp量化工具实现4-bit模型压缩 - 部署示例代码: ```python from transformers import AutoProcessor, Blip2ForConditionalGeneration model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值