自抗扰控制ADRC之反馈控制律(NLSEF)

目录

前言

1.非线性状态误差反馈控制律(NLSEF)

1.1 控制律形式

1.2 控制量的生成(或者说扰动的补偿)

1.2.1补偿形式①

1.2.1补偿形式②

2.仿真分析

2.1仿真模型

2.2仿真结果


前言

前面的两篇博客依次介绍了TD微分跟踪器安排过渡过程、扩张观测器:

自抗扰控制ADRC之三种微分跟踪器TD仿真分析_Mr. 邹的博客-CSDN博客

自抗扰控制ADRC之扩张观测器_Mr. 邹的博客-CSDN博客

这里个人觉得韩老师书上对扩张观测器的一段描述非常精髓,贴图于此(仅作为学术交流!)

 本篇博客介绍ADRC的最后一部分:非线性状态误差反馈控制律(NLSEF)。

1.非线性状态误差反馈控制律(NLSEF)

1.1 控制律形式

简单的理解就是用非线性的控制律取代线性的PID,主要有两种形式:

①PD形式:

δ为线性区间长度=5*ts~10*ts,ts为采样周期。

 ②

 r0和h0为控制参数:r0为速度因子=10~500;②h0为采样周期

1.2 控制量的生成(或者说扰动的补偿)

1.2.1补偿形式①

u=\frac{u_{0}-z_{3}}{b_{0}}

注:这个结构中控制量实际上被分成两部分,其中-z3/b0是补偿扰动的分量,而u0/b0是用非线性反馈来控制积分器串联型的分量。

其对应的ADRC结构图为:

1.2.1补偿形式②

其对应的ADRC结构图为:

2.仿真分析

这里选取参数kp=100,kd=1,对象非线性PID和线性PID调节的效果

2.1仿真模型

2.2仿真结果

 结论:可以看到非线性PID控制效果很够快速且无超调的跟踪指令位置,且控制输入较为缓和。

### 非线性状态误差反馈概述 非线性状态误差反馈 (Nonlinear State Error Feedback, NLSEF) 是一种用于控制系统设计的方法,旨在通过引入非线性的控制策略来改善系统的性能稳定性。这种方法特别适用于那些具有复杂动态特性不确定参数的系统[^1]。 #### 原理 NLSEF 的核心思想在于利用系统的当前状态与其期望状态之间的差异作为输入信号,经过特定的设计算法处理后生成相应的控制指令。这种机制能够有效地补偿由于模型不精确或其他外部干扰所引起的偏差。具体来说,在构建控制器的过程中会考虑如下几个方面: - **建模精度**:为了提高控制效果,通常需要建立尽可能接近实际物理过程的动力学方程; - **鲁棒性增强**:针对可能存在的不确定性因素采取措施加以抑制; - **优化目标函数**:定义合适的评价标准指导调整各环节增益系数等参数设置; ```matlab % MATLAB code snippet demonstrating a simple implementation of an NLSEF controller. function u = nlsef_controller(e, Kp, Ki, Kd) % e is the error vector between desired and actual states % Kp, Ki, Kd are proportional-integral-derivative gains integral_e = cumsum(e); % Integral term calculation over time steps derivative_e = diff([0; e]); % Derivative term approximation using finite differences u = -(Kp * e + Ki * integral_e(end) + Kd * derivative_e); end ``` 此段MATLAB代码展示了如何实现一个基于比例积分微分(PID)结构下的简化版NLSEF控制器。其中`e`表示被控对象的状态变量与设定值间的差距向量,而`u`则代表最终输出给执行机构的动作命令[^2]。 #### 应用场景 NLSEF 广泛应用于多个领域内不同类型的自动化设备之中,包括但不限于机器人运动规划、航空航天飞行器姿态调节以及化工生产流程监控等方面。其优势体现在可以灵活应对各种复杂的工况变化并保持良好的跟踪特性。例如,在无人机自主导航任务里,借助于先进的传感器技术高效的计算平台支持下,采用此类方法可显著提升路径跟随能力抗风扰动能力[^3]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mr. 邹

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值