(1)MRI预处理部分
首先是该将原始的MRI图像数据转换为适合进一步分析的格式。在得到被试MRI核磁图像数据后,为了方便后续处理需要将MRI的DICOM文件转化成NII文件。MRI图像预处理是TMS导航系统中重要的一步,通过适当的预处理,可以提高后续分析结果的可靠性和准确性。它包括以下步骤:图像滤波、图像分割、全脑分割、图像配准、三维重建及可视化、皮质映射等。
医学图像滤波
由于在进行核磁共振扫描的时候,电子设备的干扰以及周边环境等因素会使得得到的医学图像受到噪声的破坏,去除医学图像中的噪声是医学图像预处理的重要步骤,对于后续的分割重建等图像处理以及医生的观察起非常重要的作用。
以下是对基于MRI导航系统中所使用到的两种滤波方法进行介绍:
中值滤波是一种非线性处理方法,它的原理是一种基于排序统计理论的非线性空间滤波器,对于某个像素点,其像素值被其邻域的中值替换,求中值的方法如图2.8.22所示。使用中值滤波方法对MRI图像的椒盐噪声等具有很好的滤波效果,可以保持图像的边缘特征和一些细节信息。
图2.8.22求中值
使用ITK中的itk::MedianImageFilter类可以实现医学图像的中值滤波,此类通过SizeType()函数设置每个维的邻域大小来实现滤波功能,如图2.8.23所示。
图2.8.23 MRI图像的中值滤波
与中值滤波不同的是,均值滤波采用的是线性的方法,通过平均整个区域的像素值来实现滤波功能。均值滤波对于高斯噪声有很好的滤波效果,但是均值滤波不能很好地保护图像的一些细节信息,使用ITK中的itk::SubtractImageFilter类可以实现医学图像的均值滤波。
颅骨剥离
颅骨剥离是医学图像处理中处理MRI图像的重要步骤,在对MRI图像进行研究时,为避免增加运算量,也避免图像后续处理,影响实验结果,通常需要将大脑区域与头骨和头皮等非脑组织分离。
通过使用ITK中的itk::StripTsImageFilter类来实现分割功能,该类属于复合过滤器。在输入MRI图像的同时输入脑掩膜图像atlasImage.mha和atlasMask.mha,如图2.8.27所示:
图2.8.27 脑核磁图像和脑掩膜图像 [19]
对ICBM152(脑成像国际联盟(International Consortium for Brain Mapping)所提供的标准空间模板)进行颅骨剥离的结果如图2.8.28所示:
图2.8.28 颅骨剥离
医学图像配准
图像配准,也称为图像融合、匹配或变形,图像配准是为了找到两幅或多