【学习笔记】神经网络与深度学习--Day 2

–Implement gradient descent for Logistic Regression

简单回顾:
在这里插入图片描述

在这里插入图片描述

L对a求偏导,就是:
− y a + 1 − y 1 − a \frac{-y}{a}+\frac{1-y}{1-a} ay+1a1y
在这里插入图片描述

在这里插入图片描述

多个样本逻辑回归(梯度下降法)

向量化可以使得运算速度加快。

在这里插入图片描述

  • X是一个(n_x, m)的矩阵

  • W是(n_x, 1)的矩阵(有多少个特征 就有多少个w)

  • **Z是要得到的结果(1,m) Z = W.T *X + b[1*m] 也就是Z = np.dot(W.T, X)+b **

  • A = [a(1),a(2),a(3)…,a(m)] = sigmoid( Z ) 使用numpy 也十分简单,A = 1.0/(1+np.exp(-Z))

反向传播(向量化)

在这里插入图片描述
在这里插入图片描述

总结:最后的参数更新在此(注:dw是dl/dw…向上第四张图内有标注)

在这里插入图片描述

但是在更新参数的时候,避免不了要使用for进行迭代了。


今天到此为止。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

JamePrin

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值