–Implement gradient descent for Logistic Regression
简单回顾:
L对a求偏导,就是:
−
y
a
+
1
−
y
1
−
a
\frac{-y}{a}+\frac{1-y}{1-a}
a−y+1−a1−y
多个样本逻辑回归(梯度下降法)
向量化可以使得运算速度加快。
-
X是一个(n_x, m)的矩阵
-
W是(n_x, 1)的矩阵(有多少个特征 就有多少个w)
-
**Z是要得到的结果(1,m) Z = W.T *X + b[1*m] 也就是Z = np.dot(W.T, X)+b **
-
A = [a(1),a(2),a(3)…,a(m)] = sigmoid( Z ) 使用numpy 也十分简单,A = 1.0/(1+np.exp(-Z))
反向传播(向量化)
总结:最后的参数更新在此(注:dw是dl/dw…向上第四张图内有标注)
但是在更新参数的时候,避免不了要使用for进行迭代了。
今天到此为止。