一、贝叶斯稀疏线性混合模型(BSLMM)
方法学介绍
贝叶斯稀疏线性混合模型(Bayesian Sparse Linear Mixed Model)是Song等人在2020年提出的一种统计模型,用于高维中介分析(high-dimensional mediation analysis)中对潜在中介的中介贡献进行估计。
在中介分析中,我们关心一个自变量对因变量的影响是通过一个中介变量来传递的。传统的中介分析方法通常假设中介效应是线性的,并且只考虑少数几个可能的中介变量。然而,实际问题中,中介效应可能是非线性的,并且存在大量的候选中介变量,这就需要更加复杂的模型来进行推断。
贝叶斯稀疏线性混合模型提供了一种自适应的方式来估计中介贡献,同时考虑潜在中介的非线性效应和高维结构。该模型使用了贝叶斯框架,并考虑了两个关键的特性:稀疏性和层次结构。
稀疏性指的是模型能够自动识别对中介贡献较弱或不相关的变量,并将它们的系数估计为零,从而实现变量选择。
层次结构指的是模型能够同时估计个体水平和群体水平的中介效应,从而考虑到个体之间的异质性。
贝叶斯稀疏线性混合模型的推断过程基于贝叶斯统计,通过利用观测