高维中介数据:先介绍两种中介分析方法

本文介绍了两种高维中介分析方法:贝叶斯稀疏线性混合模型(BSLMM)和高维中介分析(HDMA)。BSLMM利用贝叶斯框架和稀疏性处理非线性及高维中介效应,识别重要中介变量。去偏LASSO(HDMA)通过校正LASSO的偏差,提供无偏估计,适合高维数据的统计推断。文中详细阐述了这两种方法的统计学原理、实现方法及结果解读。
摘要由CSDN通过智能技术生成

一、贝叶斯稀疏线性混合模型(BSLMM)

方法学介绍

贝叶斯稀疏线性混合模型(Bayesian Sparse Linear Mixed Model)是Song等人在2020年提出的一种统计模型,用于高维中介分析(high-dimensional mediation analysis)中对潜在中介的中介贡献进行估计。

在中介分析中,我们关心一个自变量对因变量的影响是通过一个中介变量来传递的。传统的中介分析方法通常假设中介效应是线性的,并且只考虑少数几个可能的中介变量。然而,实际问题中,中介效应可能是非线性的,并且存在大量的候选中介变量,这就需要更加复杂的模型来进行推断。

贝叶斯稀疏线性混合模型提供了一种自适应的方式来估计中介贡献,同时考虑潜在中介的非线性效应和高维结构。该模型使用了贝叶斯框架,并考虑了两个关键的特性:稀疏性和层次结构

稀疏性指的是模型能够自动识别对中介贡献较弱或不相关的变量,并将它们的系数估计为零,从而实现变量选择。

层次结构指的是模型能够同时估计个体水平和群体水平的中介效应,从而考虑到个体之间的异质性。

贝叶斯稀疏线性混合模型的推断过程基于贝叶斯统计,通过利用观测

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

探路者Myra

童叟无欺,愿者上钩,感恩认可

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值