高维多元中介分析:另外8种方法

本文介绍了多种高维中介分析方法,包括HDMM、HILMA、HIMA、LVMA、MedFix、PLasso、PCMA和SPCMA。这些方法在处理高维数据中介效应时各有特点,如HDMM利用主中介方向,HIMA结合SIS和MCP筛选中介变量,LVMA采用潜在变量模型,MedFix和PLasso应用LASSO惩罚,PCMA和SPCMA则利用主成分分析来降低维度。文章提供了方法学介绍、实现方法和相关参考文献。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

三、具有主中介方向的高维多元中介分析(HDMM)

方法学介绍

具有主中介方向的高维多元中介分析

统计学介绍

用基于似然的方法来计算中介主方向 (“principal directions of mediation” ,PDM),它是加载权重,用于线性组合输入的中介以形成单个潜在变量,以替换分析中的原始中介。虽然 HDMM 不能用于估计全局中介效应或特定中介的贡献,但它仍然可以用于推断是否存在通过作为联合系统的中介集合发生的中介。

实现方法

安包准备

# github上面install :oliverychen/PDM
devtools::install_github("oliverychen/PDM")
library(PDM)
library(hdmed)

 数据准备

A <- as.numeric(scale(med_dat$A)) # 自变量
M <- scale(med_dat$M[,1:8])  # 中介变量
Y <- as.numeric(scale(med_dat$Y)) # 因变量

length(A)
# [1] 100

dim(M)
# [1] 100   8

length(Y)
# [1] 100

 数据分析

out <- me
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

探路者Myra

童叟无欺,愿者上钩,感恩认可

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值