四旋翼刚体运动学模型输入为速度和角速度,输出为位置和姿态。
这里插入欧拉角的介绍:
首先对其定义进行说明:将地球坐标系绕固定点转动三次与其机体坐标系一致。三次转动过程中,每次转动旋转轴都是绕被转动坐标系的某一轴,每次转动的角度为欧拉角。
上述三次旋转对应下图。
根据上图所示,分别绕自身z,y,x轴旋转,,角度,分别对应偏航、俯仰、横滚角。
刚体运动学模型根据转动表示方法的不同可分为以下三种表示方式。
1. 基于欧拉角模型
其中
上述模型中对于位置运动学模型比较清楚,对机体坐标系位置进行一次微分可得到机体坐标系速度。而式2的详细推导如下:
对于图中三次欧拉旋转,分析第一次绕z轴转动角度,仅z轴角速度发生变化。
第二次再绕机体坐标系y轴转动角度时,此时z,y轴角速度均发生变化(这里的参考系是初始旋转的机体坐标系,参考的是“固定”的机体坐标系)。
其中,
第三次最后绕机体坐标系x轴转动,三个轴的角速度均发生变化。
其中,
即可得:
进一步可以得到下式:
至此,对于欧拉角表示的刚体运动学建模完成。
正常而言,其中旋转过程是围绕机体坐标系转动,旋转矩阵叠加过程应该是右乘,上述推导中Z轴角速度叠加两次旋转却是左乘。其实仔细看可以发现,z轴角速度变换的参考是基于初始转动的机体系而言,本质上是以初始机体系为固定轴进行转动。
此处,引入了左乘和右乘的概念,什么时候右乘,什么时候左乘?
总结而言,围绕固定的轴,世界坐标系等转动,本质上是坐标的变化,左乘;围绕新的坐标系(机体坐标系)转动,本质上是向量基的变化,右乘。
对于上述欧拉角转动,世界坐标系围绕待转动的轴旋转三次和机体坐标系一致,世界坐标系到机体坐标系的旋转矩阵应该是Rz() Ry()Rx()。
针对机器人应用中,一般像传感器参数转换(雷达点到车机体转换等)直接左乘就行,因为雷达点转换到车机体下,是以车机体不动,相对固定的坐标系。