理论基础
- 源于东京理工大学教授狩野纪昭(Noriaki Kano)和他的同事Fumio Takahashi于1979 年发表的《质量的保健因素和激励因素》
- 狩野纪昭受行为科学家赫兹伯格的双因素理论的启发,提出了满意度的二维模式-卡诺模型。
- 二维模式认为,当提供某些因素时,未必会获得用户的满意,有时可能会造成不满意,有时提供或不提供某些因素,用户认为根本无差异,这就是满意度的二维模式。
- 在日常满意度应用中,认为满意度是一维的,即某个产品(页面),提供更多功能、服务时用户就会感到满意,相反,当功能、服务不充足时,用户会感到不满。双因素理论认为引起人们工作动机的因素主要有两个,一是保健因素,二是激励因素。只有激励因素才能够给人们带来满意感,而保健因素只能消除人们的不满,但不会带来满意感。
用途:
测量用户对产品功能/服务的分类和优先级,多用于产品的功能配置、新品卖点组合。
可回答以下商业问题:
- 哪些产品概念或功能该开发,哪些应该舍弃?
- 哪些问题应该优先解决,哪些可以推迟?
- 哪些功能对用户满意度/体验的提升最有价值?
适用场景:
-
适用于产品开发阶段
-
和其他模型相比,更适合用于产品功能属性的分类(不能进行排序和计算,不能解释原因),因此行业上更适用于家电、3C、互联网等
具体概念:
KANO模型从用户角度将需求/功能划分为五种类型:
- 必备属性(M):用户认为产品“必须有”的属性 。当优化此特性,用户满意度不会提升,当不提供此特性,用户满意度会大幅降低;
- 期望属性(O):优秀但并不“必须”的属性,是多多益善的需求。当提供此需求,用户满意度会提升;当不提供此需求,用户满意度会降低;
- 魅力属性(A):完全出乎意料的属性。如果不提供此特性,用户满意度不会降低,但当提供此特性,用户满意度会有很大提升;
- 无差异因素(I):无论提供或不提供此需求,用户满意度都不会有改变,用户根本不在意;
- 反向因素(R):用户根本都没有此需求,提供后用户满意度反而会下降。


问卷设计及输出步骤
(相当标准化)
1、问卷设计
-
确定产品的关键属性,并准确描述。如我想开发一款智能手机,想测试5个产品概念:
- 拍照功能
- 多种颜色可选
- 人脸识别功能
- 超薄款
- AI辅助功能
-
问卷题目编写
- 每个概念/功能相关的题目均需设置正反两个问题
- 问题的选项是标准化的
例如:
2、收集问卷
3、数据清洗
大部分情况下可以直接计算,如果乱填的问卷太多建议先清洗(通过选项之间的逻辑关系进行清洗)
4、数据分析
有两种算分的手段:
-
使用软件/网站(如SPSSAU免费版限制处理100样本量)
-
自己写公式算(参考我自己写的公式👇👇👇)
公式参考:
=IF(AND(B4=$N$6,C4=$P$4),$P$6,IF(AND(B4=$N$6,C4=$Q$4),$Q$6,IF(AND(B4=$N$6,C4=$R$4),$R$6,IF(AND(B4=$N$6,C4=$S$4),$S$6,IF(AND(B4=$N$6,C4=$T$4),$T$6,IF(AND(B4=$N$7,C4=$P$4),$P$7,IF(AND(B4=$N$7,C4=$Q$4),$Q$7,IF(AND(B4=$N$7,C4=$R$4),$R$7,IF(AND(B4=$N$7,C4=$S$4),$S$7,IF(AND(B4=$N$7,C4=$T$4),$T$7,IF(AND(B4=$N$8,C4=$P$4),$P$8,IF(AND(B4=$N$8,C4=$Q$4),$Q$8,IF(AND(B4=$N$8,C4=$R$4),$R$8,IF(AND(B4=$N$8,C4=$S$4),$S$8,IF(AND(B4=$N$8,C4=$T$4),$T$8,IF(AND(B4=$N$9,C4=$P$4),$P$9,IF(AND(B4=$N$9,C4=$Q$4),$Q$9,IF(AND(B4=$N$9,C4=$R$4),$R$9,IF(AND(B4=$N$9,C4=$S$4),$S$9,IF(AND(B4=$N$9,C4=$T$4),$T$9,IF(AND(B4=$N$10,C4=$P$4),$P$10,IF(AND(B4=$N$10,C4=$Q$4),$Q$10,IF(AND(B4=$N$10,C4=$R$4),$R$10,IF(AND(B4=$N$10,C4=$S$4),$S$10,IF(AND(B4=$N$10,C4=$T$4),$T$10,"-")))))))))))))))))))))))))
=COUNTIF($W4:$W9999,AD$5)/COUNTA($B4:$B9999)
=INDEX($AD$5:$AI$5,0,MATCH(MAX($AD6:$AI6),$AD6:$AI6,0))
5、结论
一般来说的需求排序是:
必备属性M>期望属性O>魅力属性A>无差异属性I,避免反向属性(一般用common sense也能排除)
注意:需求的分类是不断变化的,比如随着市场教育,某些魅力属性会逐步变成必备属性
优缺点
优点:
- 简单好用,直观易懂
- 可以快速验证想法
缺点:
- 需要较多的问题题目,特别是列举较多功能时,消费者会被反复提问
- 仅适用于分类,不能进行排名(此处cue一下Maxdiff,只能排名,无法分类)
- 需要配合其他研究才能对结果进行充分解释
- 没有考虑价格等因素,仅是初步的测试