容错控制概述(含推导)

1. 系统描述

设我们有如下线性系统
{ x ˙ = A x + B u + E f y = C x (1) \begin{cases} \begin{aligned} \dot{x} &= Ax + Bu + Ef \\ y &= Cx \end{aligned} \end{cases} \tag{1} {x˙y=Ax+Bu+Ef=Cx(1)其中 f f f为外界扰动; x ∈ R n , u ∈ R m , f ∈ R r , y ∈ R p x \in \mathbb{R}^n, u \in \mathbb{R}^m, f \in \mathbb{R}^r, y \in \mathbb{R}^p xRn,uRm,fRr,yRp A ∈ R n × n , B ∈ R n × m , E ∈ R n × r , C ∈ R p × n A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, E \in \mathbb{R}^{n \times r}, C \in \mathbb{R}^{p \times n} ARn×n,BRn×m,ERn×r,CRp×n
作为扰动, f f f一般认为是有界的,即
∥ f ˙ ∥ ≤ θ \Big \Vert \dot f \Big \Vert \leq \theta f˙ θ
容错控制的目的:设计一个算法,使得系统能够较为接近地估计扰动 f f f,并在最终的输出中得到抵消了扰动作用后的输出值。

2. 估计器设计

设计一个中间变量/辅助变量
ξ = f + K y , K ∈ R r × p (2) \xi = f + Ky, \qquad \quad K \in \mathbb{R}^{r \times p} \tag{2} ξ=f+Ky,KRr×p(2)则有 f = ξ − K y f = \xi - Ky f=ξKy。对上式求导
ξ ˙ = f ˙ + K y ˙ = f ˙ + K C x ˙ = f ˙ + K C ( A x + B u + E f ) = f ˙ + K C [ A x + B u + E ( ξ − K y ) ] = f ˙ + K C ( A x + B u + E ξ − E K C x ) = f ˙ + K C [ ( A − E K C ) x + B u + E ξ ] (3) \begin{aligned} \dot{\xi} &= \dot{f} + K \dot{y} \\ &= \dot{f} + K C \dot{x} \\ &= \dot{f} + K C \left( Ax + Bu + Ef \right) \\ &= \dot{f} + K C \left[ Ax + Bu + E \left( \xi - Ky \right) \right] \\ &= \dot{f} + K C \left( Ax + Bu + E \xi - EKCx \right) \\ &= \dot{f} + K C \left[ \left( A - EKC \right) x + Bu + E \xi \right] \\ \end{aligned} \tag{3} ξ˙=f˙+Ky˙=f˙+KCx˙=f˙+KC(Ax+Bu+Ef)=f˙+KC[Ax+Bu+E(ξKy)]=f˙+KC(Ax+Bu+EξEKCx)=f˙+KC[(AEKC)x+Bu+Eξ](3)
设计如下估计器
{ x ^ ˙ = A x ^ + B u + E f ^ + L ( y − y ^ ) ξ ^ ˙ = K C [ ( A − E K C ) x ^ + B u + E ξ ^ ] y ^ = C x ^ f ^ = ξ ^ − K y ^ (4) \begin{cases} \begin{aligned} \dot{ \hat{x} } &= A \hat x +Bu + E \hat f + L \left( y - \hat y \right) \\ \dot { \hat \xi } &= KC \left[ \left( A - EKC \right) \hat x + Bu +E \hat \xi \right] \\ \hat y &= C \hat x \\ \hat f &= \hat \xi - K \hat y \end{aligned} \end{cases} \tag{4} x^˙ξ^˙y^f^=Ax^+Bu+Ef^+L(yy^)=KC[(AEKC)x^+Bu+Eξ^]=Cx^=ξ^Ky^(4)设计的上述估计器能够正确估计扰动 f f f,并使系统达到期望状态。证明如下。

4. 稳定性证明(重难点!!)

对状态 x x x与中间变量 ξ \xi ξ求其真实值与估计值之间的误差
e x = x −   h a t , e ξ = ξ − ξ ^ , e f = f − f ^ = ξ − K y − ξ ^ + K y ^ = e ξ − K C e x e_x = x - \ hat, \quad e_{\xi} = \xi - \hat \xi, \\ e_f = f - \hat f = \xi - Ky - \hat \xi + K \hat y = e_\xi - KC e_x ex=x hat,eξ=ξξ^,ef=ff^=ξKyξ^+Ky^=eξKCex并求其各自导数(参考式(3)(4)):
e ˙ x = x ˙ − x ^ ˙ = A x + B u + E f − [ A x ^ + B u + E f ^ + L ( y − y ^ ) ] = A e x + E e f − L C e x = ( A − L C ) e x + E e f = ( A − L C ) e x + E ( e ξ − K C e x ) = ( A − L C − E K C ) e x + E e ξ (5) \begin{aligned} \dot{e}_x &= \dot x - \dot{ \hat x} \\ &= Ax + Bu + Ef - \left[ A \hat x +Bu + E \hat f + L \left( y - \hat y \right) \right] \\ &= Ae_x + Ee_f - LCe_x \\ &= \left( A - LC \right) e_x + E e_f \\ &= \left( A - LC \right) e_x + E \left( e_\xi - KC e_x \right) \\ &= \left( A - LC - EKC \right) e_x + E e_\xi \end{aligned} \tag{5} e˙x=x˙x^˙=Ax+Bu+Ef[Ax^+Bu+Ef^+L(yy^)]=Aex+EefLCex=(ALC)ex+Eef=(ALC)ex+E(eξKCex)=(ALCEKC)ex+Eeξ(5) e ˙ ξ = ξ ˙ − ξ ^ ˙ = f ˙ + K C [ ( A − E K C ) x + B u + E ξ ] − K C [ ( A − E K C ) x ^ + B u + E ξ ^ ] = f ˙ + K C ( A − E K C ) e x + K C E e ξ (6) \begin{aligned} \dot{e}_\xi &= \dot \xi - \dot{ \hat \xi} \\ &= \dot{f} + K C \left[ \left( A - EKC \right) x + Bu + E \xi \right] - KC \left[ \left( A - EKC \right) \hat x + Bu +E \hat \xi \right] \\ &= \dot{f} + K C \left( A - EKC \right) e_x + KCE e_\xi \end{aligned} \tag{6} e˙ξ=ξ˙ξ^˙=f˙+KC[(AEKC)x+Bu+Eξ]KC[(AEKC)x^+Bu+Eξ^]=f˙+KC(AEKC)ex+KCEeξ(6)正定对称矩阵 P ∈ R n × n P \in \mathbb{R}^{n \times n} PRn×n,标量 δ \delta δ,由于 P P P为正定对称的,故 P T = P P^T = P PT=P。设计李雅普诺夫函数如下:
V = e x T P e x T + δ e ξ T e ξ (7) V = e_x^T P e_x^T + \delta e_\xi^T e_\xi \tag{7} V=exTPexT+δeξTeξ(7)对其求导(考虑式(5)(6))
V ˙ = e ˙ x T P e x + e x T P e ˙ x + δ e ˙ ξ T e ξ + δ e ξ T e ˙ ξ = [ ( A − L C − E K C ) e x + E e ξ ] T P e x + e x T P [ ( A − L C − E K C ) e x + E e ξ ] + [ f ˙ + K C ( A − E K C ) e x + K C E e ξ ] T e ξ + δ e ξ T [ f ˙ + K C ( A − E K C ) e x + K C E e ξ ] = e x T ( A − L C − E K C ) T P e x + e ξ T E T P e x + e x T P ( A − L C − E K C ) e x + e x T P E e ξ + δ f ˙ T e ξ + δ e x T ( A − E K C ) T C T K T e ξ + δ e ξ T E T C T K T e ξ + δ e ξ T f ˙ + δ e ξ T K C ( A − E K C ) e x + δ e ξ T K C E e ξ = e x T [ P ( A − L C − E K C ) + ( A − L C − E K C ) T P ] e x + e x T [ P E + δ ( A − E K C ) T C T K T ] e ξ + e ξ T [ E T P + δ K C ( A − E K C ) ] e x + e ξ T ( δ E T C T K T + δ K C E ) e ξ + 2 δ e ξ T f ˙ (8) \begin{aligned} \dot V &= \dot{e}_x^T P e_x + e_x^T P \dot{e}_x + \delta \dot{e}_\xi^T e_\xi + \delta e_\xi^T \dot{e}_\xi \\ &= \left[ \left( A - LC - EKC \right) e_x + E e_\xi \right]^T P e_x + e_x^T P \left[ \left( A - LC - EKC \right) e_x + E e_\xi \right] \\ &+ \left[ \dot{f} + KC \left( A - EKC \right) e_x + KCE e_\xi \right]^T e_\xi \\ &+ \delta e_\xi^T \left[ \dot{f} + KC \left( A - EKC \right) e_x + KCE e_\xi \right] \\ &= e_x^T \left( A - LC - EKC \right)^T P e_x + e_\xi^T E^T P e_x + e_x^T P \left( A - LC - EKC \right) e_x \\ &+ e_x^T PE e_\xi + \delta \dot f^T e_\xi + \delta e_x^T \left( A - EKC \right)^T C^T K^T e_\xi + \delta e_\xi^T E^T C^T K^T e_\xi \\ &+ \delta e_\xi^T \dot f + \delta e_\xi^T KC \left( A - EKC \right) e_x + \delta e_\xi^T KCE e_\xi \\ &= e_x^T \left[ P \left( A - LC - EKC \right) + \left( A - LC - EKC \right)^T P \right] e_x \\ &+ e_x^T \left[ PE + \delta \left( A - EKC \right)^T C^T K^T \right] e_\xi + e_\xi^T \left[ E^T P + \delta KC \left( A - EKC \right) \right] e_x \\ &+ e_\xi^T \left( \delta E^T C^T K^T + \delta KCE \right) e_\xi + 2 \delta e_\xi^T \dot f \end{aligned} \tag{8} V˙=e˙xTPex+exTPe˙x+δe˙ξTeξ+δeξTe˙ξ=[(ALCEKC)ex+Eeξ]TPex+exTP[(ALCEKC)ex+Eeξ]+[f˙+KC(AEKC)ex+KCEeξ]Teξ+δeξT[f˙+KC(AEKC)ex+KCEeξ]=exT(ALCEKC)TPex+eξTETPex+exTP(ALCEKC)ex+exTPEeξ+δf˙Teξ+δexT(AEKC)TCTKTeξ+δeξTETCTKTeξ+δeξTf˙+δeξTKC(AEKC)ex+δeξTKCEeξ=exT[P(ALCEKC)+(ALCEKC)TP]ex+exT[PE+δ(AEKC)TCTKT]eξ+eξT[ETP+δKC(AEKC)]ex+eξT(δETCTKT+δKCE)eξ+2δeξTf˙(8)对于(8)式中最后一项 2 δ e ξ T f ˙ 2 \delta e_\xi^T \dot f 2δeξTf˙ 2 δ e ξ T f ˙ ∈ R 1   × r ⋅ r × 1 = R 1 × 1 2 \delta e_\xi^T \dot f \in \mathbb{R}^{1\ \times r \cdot r \times 1} = \mathbb{R}^{1 \times 1} 2δeξTf˙R1 ×rr×1=R1×1为标量,根据绝对不等式,并考虑到 f f f的有界性:
2 δ e ξ T f ˙ = 2 δ 2 ⋅ ∥ e ξ T f ˙ ∥ 2 = 2 δ 2 ⋅ e ξ T e ξ ⋅ f ˙ T f ˙ ≤ 1 ε e ξ T e ξ + ε δ 2 f ˙ T f ˙ = 1 ε e ξ T e ξ + ε δ 2 ∥ f ˙ ∥ 2 ≤ 1 ε e ξ T e ξ + ε δ 2 θ 2 \begin{aligned} 2 \delta e_\xi^T \dot f &= 2 \sqrt{ \delta^2 \cdot \Big \Vert e_\xi^T \dot f \Big \Vert ^2 } \\ &= 2 \sqrt{ \delta^2 \cdot e_\xi^T e_\xi \cdot \dot f^T \dot f } \\ &\leq \frac{1}{\varepsilon} e_\xi^T e_\xi + \varepsilon \delta^2 \dot f^T \dot f \\ &= \frac{1}{\varepsilon} e_\xi^T e_\xi + \varepsilon \delta^2 \Big \Vert \dot f \Big \Vert ^2 \\ &\leq \frac{1}{\varepsilon} e_\xi^T e_\xi + \varepsilon \delta^2 \theta^2 \end{aligned} 2δeξTf˙=2δ2 eξTf˙ 2 =2δ2eξTeξf˙Tf˙ ε1eξTeξ+εδ2f˙Tf˙=ε1eξTeξ+εδ2 f˙ 2ε1eξTeξ+εδ2θ2代入式(8)有
V ˙ ≤ e x T [ P ( A − L C − E K C ) + ( A − L C − E K C ) T P ] e x + e x T [ P E + δ ( A − E K C ) T C T K T ] e ξ + e ξ T [ E T P + δ K C ( A − E K C ) ] e x + e ξ T ( δ E T C T K T + δ K C E ) e ξ + ( 1 ε e ξ T e ξ + ε δ 2 θ 2 ) = e x T G 11 e x + e x T G 12 e ξ + e ξ T G 21 e x + e ξ T G 22 e ξ + ε δ 2 θ 2 (9) \begin{aligned} \dot V &\leq e_x^T \left[ P \left( A - LC - EKC \right) + \left( A - LC - EKC \right)^T P \right] e_x \\ &+ e_x^T \left[ PE + \delta \left( A - EKC \right)^T C^T K^T \right] e_\xi + e_\xi^T \left[ E^T P + \delta KC \left( A - EKC \right) \right] e_x \\ &+ e_\xi^T \left( \delta E^T C^T K^T + \delta KCE \right) e_\xi + \left( \frac{1}{\varepsilon} e_\xi^T e_\xi + \varepsilon \delta^2 \theta^2 \right) \\ &= e_x^T G_{11} e_x + e_x^T G_{12} e_\xi + e_\xi^T G_{21} e_x + e_\xi^T G_{22} e_\xi + \varepsilon \delta^2 \theta^2 \\ \end{aligned} \tag{9} V˙exT[P(ALCEKC)+(ALCEKC)TP]ex+exT[PE+δ(AEKC)TCTKT]eξ+eξT[ETP+δKC(AEKC)]ex+eξT(δETCTKT+δKCE)eξ+(ε1eξTeξ+εδ2θ2)=exTG11ex+exTG12eξ+eξTG21ex+eξTG22eξ+εδ2θ2(9)其中
G 11 = P ( A − L C − E K C ) + ( A − L C − E K C ) T P G 12 = P E + δ ( A − E K C ) T C T K T G 21 = E T P + δ K C ( A − E K C ) G 22 = δ E T C T K T + δ K C E + 1 ε I r × r (10) \begin{aligned} G_{11} &= P \left( A - LC - EKC \right) + \left( A - LC - EKC \right)^T P \\ G_{12} &= PE + \delta \left( A - EKC \right)^T C^T K^T \\ G_{21} &= E^T P + \delta KC \left( A - EKC \right) \\ G_{22} &= \delta E^T C^T K^T + \delta KCE + \frac{1}{\varepsilon} I_{r \times r} \end{aligned} \tag{10} G11G12G21G22=P(ALCEKC)+(ALCEKC)TP=PE+δ(AEKC)TCTKT=ETP+δKC(AEKC)=δETCTKT+δKCE+ε1Ir×r(10)注意到 G 12 T = G 21 G_{12}^T = G_{21} G12T=G21。设拓展状态量 e t = [ e x e ξ ] e_t = \left[ \begin{matrix} e_x \\ e_\xi \end{matrix} \right] et=[exeξ],则式(9)可进一步简化为
V ˙ ≤ e t T G 1 e t + α (11) \dot V \leq e_t^T G_1 e_t + \alpha \tag{11} V˙etTG1et+α(11)其中
G 1 = [ G 11 G 12 G 21 G 22 ] , α = ε δ 2 θ 2 (12) G_1 = \left[ \begin{matrix} G_{11} & G_{12} \\ G_{21} & G_{22} \end{matrix} \right], \quad \alpha = \varepsilon \delta^2 \theta^2 \tag{12} G1=[G11G21G12G22],α=εδ2θ2(12)可见,为满足李雅普诺夫稳定性,矩阵 G 1 G_1 G1负定即可,即 G 1 ≤ 0 G_1 \leq 0 G10 G 11 ∈ R n × n , G 12 ∈ R n × r , G 21 ∈ R r × n , G 22 ∈ R r × r G_{11} \in \mathbb{R}^{n \times n}, G_{12} \in \mathbb{R}^{n \times r}, G_{21} \in \mathbb{R}^{r \times n}, G_{22} \in \mathbb{R}^{r \times r} G11Rn×n,G12Rn×r,G21Rr×n,G22Rr×r G 1 ∈ R ( n + r ) × ( n + r ) G_1 \in \mathbb{R}^{ \left( n+r \right) \times \left( n+r \right) } G1R(n+r)×(n+r)

G 2 = − G 1 G_2 = -G_1 G2=G1,则 G 2 G_2 G2正定,那么
V ˙ ≤ − e t T G 2 e t + α (13) \dot V \leq -e_t^T G_2 e_t + \alpha \tag{13} V˙etTG2et+α(13)
接下来证明为什么只要 G 1 G_1 G1负定( G 2 G_2 G2正定),系统就稳定。
对于李雅普诺夫函数 V V V,可以探究其有界性:
V = e x T P e x + δ e ξ T e ξ ≤ λ max ⁡ { P } e x T e x + δ e ξ T e ξ = λ max ⁡ { P } ∥ e x ∥ 2 + δ ∥ e ξ ∥ 2 ≤ max ⁡ { λ max ⁡ { P } , δ } ( ∥ e x ∥ 2 + ∥ e ξ ∥ 2 ) = max ⁡ { λ max ⁡ { P } , δ } ∥ e t ∥ 2 (14) \begin{aligned} V &= e_x^T P e_x + \delta e_\xi^T e_\xi \\ &\leq \lambda_{\max} \left\{ P \right\} e_x^T e_x + \delta e_\xi^T e_\xi \\ &= \lambda_{\max} \left\{ P \right\} \big \Vert e_x \big \Vert ^2 + \delta \big \Vert e_\xi \big \Vert ^2 \\ &\leq \max \left\{ \lambda_{\max} \left\{ P \right\}, \delta \right\} \left( \big \Vert e_x \big \Vert ^2 + \big \Vert e_\xi \big \Vert ^2 \right) \\ &= \max \left\{ \lambda_{\max} \left\{ P \right\}, \delta \right\} \big \Vert e_t \big \Vert ^2 \end{aligned} \tag{14} V=exTPex+δeξTeξλmax{P}exTex+δeξTeξ=λmax{P} ex 2+δ eξ 2max{λmax{P},δ}( ex 2+ eξ 2)=max{λmax{P},δ} et 2(14)其中 λ max ⁡ { P } \lambda_{\max} \left\{ P \right\} λmax{P}是矩阵 P P P的最大特征值。
另一方面,对于 e t T G 2 e t e_t^T G_2 e_t etTG2et
λ min ⁡ { G 2 } e t T e t ≤ e t T G 2 e t ≤ λ max ⁡ { G 2 } e t T e t \lambda_{\min} \left\{ G_2 \right\} e_t^T e_t \leq e_t^T G_2 e_t \leq \lambda_{\max} \left\{ G_2 \right\} e_t^T e_t λmin{G2}etTetetTG2etλmax{G2}etTet代入到式(13)有
V ˙ ≤ − e t T G 2 e t + α ≤ − λ min ⁡ { G 2 } e t T e t + α = − λ min ⁡ { G 2 } ⋅ max ⁡ { λ max ⁡ { P } , δ } max ⁡ { λ max ⁡ { P } , δ } ∥ e t ∥ 2 + α ≤ − λ min ⁡ { G 2 } max ⁡ { λ max ⁡ { P } , δ } ⋅ V + α = − κ V + α (15) \begin{aligned} \dot V &\leq -e_t^T G_2 e_t + \alpha \\ &\leq -\lambda_{\min} \left\{ G_2 \right\} e_t^T e_t + \alpha \\ &= -\lambda_{\min} \left\{ G_2 \right\} \cdot \frac{ \max \left\{ \lambda_{\max} \left\{ P \right\}, \delta \right\} }{ \max \left\{ \lambda_{\max} \left\{ P \right\}, \delta \right\} } \big \Vert e_t \big \Vert ^2 + \alpha \\ &\leq -\frac{ \lambda_{\min} \left\{ G_2 \right\} }{ \max \left\{ \lambda_{\max} \left\{ P \right\}, \delta \right\} } \cdot V + \alpha \\ &= - \kappa V + \alpha \end{aligned} \tag{15} V˙etTG2et+αλmin{G2}etTet+α=λmin{G2}max{λmax{P},δ}max{λmax{P},δ} et 2+αmax{λmax{P},δ}λmin{G2}V+α=κV+α(15)其中
κ = λ min ⁡ { G 2 } max ⁡ { λ max ⁡ { P } , δ } , α = ε δ 2 θ 2 (16) \kappa = \frac{ \lambda_{\min} \left\{ G_2 \right\} }{ \max \left\{ \lambda_{\max} \left\{ P \right\}, \delta \right\} }, \qquad \alpha = \varepsilon \delta^2 \theta^2 \tag{16} κ=max{λmax{P},δ}λmin{G2},α=εδ2θ2(16)
假设有集合
S = { e t ∣ min ⁡ { λ min ⁡ { P } , δ } ⋅ ∥ e t ∥ 2 ≥ α κ } \mathcal{S} = \left\{ e_t \bigg\vert \min \left\{ \lambda_{\min} \left\{ P \right\}, \delta \right\} \cdot \big \Vert e_t \big \Vert ^2 \geq \frac{\alpha}{\kappa} \right\} S={et min{λmin{P},δ} et 2κα}那么当 e t ∈ S e_t \in \mathcal{S} etS时, V ≥ min ⁡ { λ min ⁡ { P } , δ } ⋅ ∥ e t ∥ 2 ≥ α κ V \geq \min \left\{ \lambda_{\min} \left\{ P \right\}, \delta \right\} \cdot \big \Vert e_t \big \Vert ^2 \geq \frac{\alpha}{\kappa} Vmin{λmin{P},δ} et 2κα,即 − V ≤ − α κ -V \leq - \frac{\alpha}{\kappa} Vκα。则
V ˙ ≤ − κ V + α ≤ κ ⋅ ( − α κ ) + α = 0 \dot V \leq - \kappa V + \alpha \leq \kappa \cdot \left( -\frac{\alpha}{\kappa} \right) + \alpha = 0 V˙κV+ακ(κα)+α=0 e t ∈ S e_t \in \mathcal{S} etS时, V ˙ ≤ 0 \dot V \leq 0 V˙0,系统一致稳定。且李雅普诺夫函数在时域上的解为
V ( t ) = α κ − α κ e − κ t (17) V \left( t \right) = \frac{\alpha}{\kappa} - \frac{\alpha}{\kappa} e ^{- \kappa t} \tag{17} V(t)=κακαeκt(17)系统一致有界。
对于集合 S \mathcal{S} S的补集
S ˉ = { e t ∣ min ⁡ { λ min ⁡ { P } , δ } ⋅ ∥ e t ∥ 2 < α κ } \bar { \mathcal{S} } = \left\{ e_t \bigg\vert \min \left\{ \lambda_{\min} \left\{ P \right\}, \delta \right\} \cdot \big \Vert e_t \big \Vert ^2 < \frac{\alpha}{\kappa} \right\} \\ Sˉ={et min{λmin{P},δ} et 2<κα}李雅普诺夫函数在时域上的解(式(17))依然成立,依然是一个衰减函数,其将逐渐以速度 e − κ t e ^{- \kappa t} eκt衰减到下限值并过渡进入集合 S \mathcal{S} S

5. 线性矩阵不等式(LMI)与舒尔补定理(Schur Complement)

根据式(12),只要满足 G 1 < 0 G_1 < 0 G1<0,系统即为稳定的。下面引入舒尔补定理
对于拥有式(12)形式的对称矩阵 G 1 G_1 G1,以下式子等价:

  1. G 1 = [ G 11 G 12 G 21 G 22 ] < 0 G_1 = \left[ \begin{matrix} G_{11} & G_{12} \\ G_{21} & G_{22} \end{matrix} \right] < 0 G1=[G11G21G12G22]<0
  2. G 11 − G 12 G 22 − 1 G 21 < 0 G_{11} - G_{12} G_{22}^{-1} G_{21} < 0 G11G12G221G21<0
  3. G 22 − G 21 G 11 − 1 G 12 < 0 G_{22} - G_{21} G_{11}^{-1} G_{12} < 0 G22G21G111G12<0因此可以将式(12)化简成上述三式的其中一种求解即可。求解得出的 K , L , P , ε K, L, P, \varepsilon K,L,P,ε即可以正确估计系统中的扰动。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值