1. 系统描述
设我们有如下线性系统
{
x
˙
=
A
x
+
B
u
+
E
f
y
=
C
x
(1)
\begin{cases} \begin{aligned} \dot{x} &= Ax + Bu + Ef \\ y &= Cx \end{aligned} \end{cases} \tag{1}
{x˙y=Ax+Bu+Ef=Cx(1)其中
f
f
f为外界扰动;
x
∈
R
n
,
u
∈
R
m
,
f
∈
R
r
,
y
∈
R
p
x \in \mathbb{R}^n, u \in \mathbb{R}^m, f \in \mathbb{R}^r, y \in \mathbb{R}^p
x∈Rn,u∈Rm,f∈Rr,y∈Rp;
A
∈
R
n
×
n
,
B
∈
R
n
×
m
,
E
∈
R
n
×
r
,
C
∈
R
p
×
n
A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, E \in \mathbb{R}^{n \times r}, C \in \mathbb{R}^{p \times n}
A∈Rn×n,B∈Rn×m,E∈Rn×r,C∈Rp×n。
作为扰动,
f
f
f一般认为是有界的,即
∥
f
˙
∥
≤
θ
\Big \Vert \dot f \Big \Vert \leq \theta
f˙
≤θ
容错控制的目的:设计一个算法,使得系统能够较为接近地估计扰动
f
f
f,并在最终的输出中得到抵消了扰动作用后的输出值。
2. 估计器设计
设计一个中间变量/辅助变量
ξ
=
f
+
K
y
,
K
∈
R
r
×
p
(2)
\xi = f + Ky, \qquad \quad K \in \mathbb{R}^{r \times p} \tag{2}
ξ=f+Ky,K∈Rr×p(2)则有
f
=
ξ
−
K
y
f = \xi - Ky
f=ξ−Ky。对上式求导
ξ
˙
=
f
˙
+
K
y
˙
=
f
˙
+
K
C
x
˙
=
f
˙
+
K
C
(
A
x
+
B
u
+
E
f
)
=
f
˙
+
K
C
[
A
x
+
B
u
+
E
(
ξ
−
K
y
)
]
=
f
˙
+
K
C
(
A
x
+
B
u
+
E
ξ
−
E
K
C
x
)
=
f
˙
+
K
C
[
(
A
−
E
K
C
)
x
+
B
u
+
E
ξ
]
(3)
\begin{aligned} \dot{\xi} &= \dot{f} + K \dot{y} \\ &= \dot{f} + K C \dot{x} \\ &= \dot{f} + K C \left( Ax + Bu + Ef \right) \\ &= \dot{f} + K C \left[ Ax + Bu + E \left( \xi - Ky \right) \right] \\ &= \dot{f} + K C \left( Ax + Bu + E \xi - EKCx \right) \\ &= \dot{f} + K C \left[ \left( A - EKC \right) x + Bu + E \xi \right] \\ \end{aligned} \tag{3}
ξ˙=f˙+Ky˙=f˙+KCx˙=f˙+KC(Ax+Bu+Ef)=f˙+KC[Ax+Bu+E(ξ−Ky)]=f˙+KC(Ax+Bu+Eξ−EKCx)=f˙+KC[(A−EKC)x+Bu+Eξ](3)
设计如下估计器
{
x
^
˙
=
A
x
^
+
B
u
+
E
f
^
+
L
(
y
−
y
^
)
ξ
^
˙
=
K
C
[
(
A
−
E
K
C
)
x
^
+
B
u
+
E
ξ
^
]
y
^
=
C
x
^
f
^
=
ξ
^
−
K
y
^
(4)
\begin{cases} \begin{aligned} \dot{ \hat{x} } &= A \hat x +Bu + E \hat f + L \left( y - \hat y \right) \\ \dot { \hat \xi } &= KC \left[ \left( A - EKC \right) \hat x + Bu +E \hat \xi \right] \\ \hat y &= C \hat x \\ \hat f &= \hat \xi - K \hat y \end{aligned} \end{cases} \tag{4}
⎩
⎨
⎧x^˙ξ^˙y^f^=Ax^+Bu+Ef^+L(y−y^)=KC[(A−EKC)x^+Bu+Eξ^]=Cx^=ξ^−Ky^(4)设计的上述估计器能够正确估计扰动
f
f
f,并使系统达到期望状态。证明如下。
4. 稳定性证明(重难点!!)
对状态
x
x
x与中间变量
ξ
\xi
ξ求其真实值与估计值之间的误差
e
x
=
x
−
h
a
t
,
e
ξ
=
ξ
−
ξ
^
,
e
f
=
f
−
f
^
=
ξ
−
K
y
−
ξ
^
+
K
y
^
=
e
ξ
−
K
C
e
x
e_x = x - \ hat, \quad e_{\xi} = \xi - \hat \xi, \\ e_f = f - \hat f = \xi - Ky - \hat \xi + K \hat y = e_\xi - KC e_x
ex=x− hat,eξ=ξ−ξ^,ef=f−f^=ξ−Ky−ξ^+Ky^=eξ−KCex并求其各自导数(参考式(3)(4)):
e
˙
x
=
x
˙
−
x
^
˙
=
A
x
+
B
u
+
E
f
−
[
A
x
^
+
B
u
+
E
f
^
+
L
(
y
−
y
^
)
]
=
A
e
x
+
E
e
f
−
L
C
e
x
=
(
A
−
L
C
)
e
x
+
E
e
f
=
(
A
−
L
C
)
e
x
+
E
(
e
ξ
−
K
C
e
x
)
=
(
A
−
L
C
−
E
K
C
)
e
x
+
E
e
ξ
(5)
\begin{aligned} \dot{e}_x &= \dot x - \dot{ \hat x} \\ &= Ax + Bu + Ef - \left[ A \hat x +Bu + E \hat f + L \left( y - \hat y \right) \right] \\ &= Ae_x + Ee_f - LCe_x \\ &= \left( A - LC \right) e_x + E e_f \\ &= \left( A - LC \right) e_x + E \left( e_\xi - KC e_x \right) \\ &= \left( A - LC - EKC \right) e_x + E e_\xi \end{aligned} \tag{5}
e˙x=x˙−x^˙=Ax+Bu+Ef−[Ax^+Bu+Ef^+L(y−y^)]=Aex+Eef−LCex=(A−LC)ex+Eef=(A−LC)ex+E(eξ−KCex)=(A−LC−EKC)ex+Eeξ(5)
e
˙
ξ
=
ξ
˙
−
ξ
^
˙
=
f
˙
+
K
C
[
(
A
−
E
K
C
)
x
+
B
u
+
E
ξ
]
−
K
C
[
(
A
−
E
K
C
)
x
^
+
B
u
+
E
ξ
^
]
=
f
˙
+
K
C
(
A
−
E
K
C
)
e
x
+
K
C
E
e
ξ
(6)
\begin{aligned} \dot{e}_\xi &= \dot \xi - \dot{ \hat \xi} \\ &= \dot{f} + K C \left[ \left( A - EKC \right) x + Bu + E \xi \right] - KC \left[ \left( A - EKC \right) \hat x + Bu +E \hat \xi \right] \\ &= \dot{f} + K C \left( A - EKC \right) e_x + KCE e_\xi \end{aligned} \tag{6}
e˙ξ=ξ˙−ξ^˙=f˙+KC[(A−EKC)x+Bu+Eξ]−KC[(A−EKC)x^+Bu+Eξ^]=f˙+KC(A−EKC)ex+KCEeξ(6)设正定对称矩阵
P
∈
R
n
×
n
P \in \mathbb{R}^{n \times n}
P∈Rn×n,标量
δ
\delta
δ,由于
P
P
P为正定对称的,故
P
T
=
P
P^T = P
PT=P。设计李雅普诺夫函数如下:
V
=
e
x
T
P
e
x
T
+
δ
e
ξ
T
e
ξ
(7)
V = e_x^T P e_x^T + \delta e_\xi^T e_\xi \tag{7}
V=exTPexT+δeξTeξ(7)对其求导(考虑式(5)(6))
V
˙
=
e
˙
x
T
P
e
x
+
e
x
T
P
e
˙
x
+
δ
e
˙
ξ
T
e
ξ
+
δ
e
ξ
T
e
˙
ξ
=
[
(
A
−
L
C
−
E
K
C
)
e
x
+
E
e
ξ
]
T
P
e
x
+
e
x
T
P
[
(
A
−
L
C
−
E
K
C
)
e
x
+
E
e
ξ
]
+
[
f
˙
+
K
C
(
A
−
E
K
C
)
e
x
+
K
C
E
e
ξ
]
T
e
ξ
+
δ
e
ξ
T
[
f
˙
+
K
C
(
A
−
E
K
C
)
e
x
+
K
C
E
e
ξ
]
=
e
x
T
(
A
−
L
C
−
E
K
C
)
T
P
e
x
+
e
ξ
T
E
T
P
e
x
+
e
x
T
P
(
A
−
L
C
−
E
K
C
)
e
x
+
e
x
T
P
E
e
ξ
+
δ
f
˙
T
e
ξ
+
δ
e
x
T
(
A
−
E
K
C
)
T
C
T
K
T
e
ξ
+
δ
e
ξ
T
E
T
C
T
K
T
e
ξ
+
δ
e
ξ
T
f
˙
+
δ
e
ξ
T
K
C
(
A
−
E
K
C
)
e
x
+
δ
e
ξ
T
K
C
E
e
ξ
=
e
x
T
[
P
(
A
−
L
C
−
E
K
C
)
+
(
A
−
L
C
−
E
K
C
)
T
P
]
e
x
+
e
x
T
[
P
E
+
δ
(
A
−
E
K
C
)
T
C
T
K
T
]
e
ξ
+
e
ξ
T
[
E
T
P
+
δ
K
C
(
A
−
E
K
C
)
]
e
x
+
e
ξ
T
(
δ
E
T
C
T
K
T
+
δ
K
C
E
)
e
ξ
+
2
δ
e
ξ
T
f
˙
(8)
\begin{aligned} \dot V &= \dot{e}_x^T P e_x + e_x^T P \dot{e}_x + \delta \dot{e}_\xi^T e_\xi + \delta e_\xi^T \dot{e}_\xi \\ &= \left[ \left( A - LC - EKC \right) e_x + E e_\xi \right]^T P e_x + e_x^T P \left[ \left( A - LC - EKC \right) e_x + E e_\xi \right] \\ &+ \left[ \dot{f} + KC \left( A - EKC \right) e_x + KCE e_\xi \right]^T e_\xi \\ &+ \delta e_\xi^T \left[ \dot{f} + KC \left( A - EKC \right) e_x + KCE e_\xi \right] \\ &= e_x^T \left( A - LC - EKC \right)^T P e_x + e_\xi^T E^T P e_x + e_x^T P \left( A - LC - EKC \right) e_x \\ &+ e_x^T PE e_\xi + \delta \dot f^T e_\xi + \delta e_x^T \left( A - EKC \right)^T C^T K^T e_\xi + \delta e_\xi^T E^T C^T K^T e_\xi \\ &+ \delta e_\xi^T \dot f + \delta e_\xi^T KC \left( A - EKC \right) e_x + \delta e_\xi^T KCE e_\xi \\ &= e_x^T \left[ P \left( A - LC - EKC \right) + \left( A - LC - EKC \right)^T P \right] e_x \\ &+ e_x^T \left[ PE + \delta \left( A - EKC \right)^T C^T K^T \right] e_\xi + e_\xi^T \left[ E^T P + \delta KC \left( A - EKC \right) \right] e_x \\ &+ e_\xi^T \left( \delta E^T C^T K^T + \delta KCE \right) e_\xi + 2 \delta e_\xi^T \dot f \end{aligned} \tag{8}
V˙=e˙xTPex+exTPe˙x+δe˙ξTeξ+δeξTe˙ξ=[(A−LC−EKC)ex+Eeξ]TPex+exTP[(A−LC−EKC)ex+Eeξ]+[f˙+KC(A−EKC)ex+KCEeξ]Teξ+δeξT[f˙+KC(A−EKC)ex+KCEeξ]=exT(A−LC−EKC)TPex+eξTETPex+exTP(A−LC−EKC)ex+exTPEeξ+δf˙Teξ+δexT(A−EKC)TCTKTeξ+δeξTETCTKTeξ+δeξTf˙+δeξTKC(A−EKC)ex+δeξTKCEeξ=exT[P(A−LC−EKC)+(A−LC−EKC)TP]ex+exT[PE+δ(A−EKC)TCTKT]eξ+eξT[ETP+δKC(A−EKC)]ex+eξT(δETCTKT+δKCE)eξ+2δeξTf˙(8)对于(8)式中最后一项
2
δ
e
ξ
T
f
˙
2 \delta e_\xi^T \dot f
2δeξTf˙,
2
δ
e
ξ
T
f
˙
∈
R
1
×
r
⋅
r
×
1
=
R
1
×
1
2 \delta e_\xi^T \dot f \in \mathbb{R}^{1\ \times r \cdot r \times 1} = \mathbb{R}^{1 \times 1}
2δeξTf˙∈R1 ×r⋅r×1=R1×1为标量,根据绝对不等式,并考虑到
f
f
f的有界性:
2
δ
e
ξ
T
f
˙
=
2
δ
2
⋅
∥
e
ξ
T
f
˙
∥
2
=
2
δ
2
⋅
e
ξ
T
e
ξ
⋅
f
˙
T
f
˙
≤
1
ε
e
ξ
T
e
ξ
+
ε
δ
2
f
˙
T
f
˙
=
1
ε
e
ξ
T
e
ξ
+
ε
δ
2
∥
f
˙
∥
2
≤
1
ε
e
ξ
T
e
ξ
+
ε
δ
2
θ
2
\begin{aligned} 2 \delta e_\xi^T \dot f &= 2 \sqrt{ \delta^2 \cdot \Big \Vert e_\xi^T \dot f \Big \Vert ^2 } \\ &= 2 \sqrt{ \delta^2 \cdot e_\xi^T e_\xi \cdot \dot f^T \dot f } \\ &\leq \frac{1}{\varepsilon} e_\xi^T e_\xi + \varepsilon \delta^2 \dot f^T \dot f \\ &= \frac{1}{\varepsilon} e_\xi^T e_\xi + \varepsilon \delta^2 \Big \Vert \dot f \Big \Vert ^2 \\ &\leq \frac{1}{\varepsilon} e_\xi^T e_\xi + \varepsilon \delta^2 \theta^2 \end{aligned}
2δeξTf˙=2δ2⋅
eξTf˙
2=2δ2⋅eξTeξ⋅f˙Tf˙≤ε1eξTeξ+εδ2f˙Tf˙=ε1eξTeξ+εδ2
f˙
2≤ε1eξTeξ+εδ2θ2代入式(8)有
V
˙
≤
e
x
T
[
P
(
A
−
L
C
−
E
K
C
)
+
(
A
−
L
C
−
E
K
C
)
T
P
]
e
x
+
e
x
T
[
P
E
+
δ
(
A
−
E
K
C
)
T
C
T
K
T
]
e
ξ
+
e
ξ
T
[
E
T
P
+
δ
K
C
(
A
−
E
K
C
)
]
e
x
+
e
ξ
T
(
δ
E
T
C
T
K
T
+
δ
K
C
E
)
e
ξ
+
(
1
ε
e
ξ
T
e
ξ
+
ε
δ
2
θ
2
)
=
e
x
T
G
11
e
x
+
e
x
T
G
12
e
ξ
+
e
ξ
T
G
21
e
x
+
e
ξ
T
G
22
e
ξ
+
ε
δ
2
θ
2
(9)
\begin{aligned} \dot V &\leq e_x^T \left[ P \left( A - LC - EKC \right) + \left( A - LC - EKC \right)^T P \right] e_x \\ &+ e_x^T \left[ PE + \delta \left( A - EKC \right)^T C^T K^T \right] e_\xi + e_\xi^T \left[ E^T P + \delta KC \left( A - EKC \right) \right] e_x \\ &+ e_\xi^T \left( \delta E^T C^T K^T + \delta KCE \right) e_\xi + \left( \frac{1}{\varepsilon} e_\xi^T e_\xi + \varepsilon \delta^2 \theta^2 \right) \\ &= e_x^T G_{11} e_x + e_x^T G_{12} e_\xi + e_\xi^T G_{21} e_x + e_\xi^T G_{22} e_\xi + \varepsilon \delta^2 \theta^2 \\ \end{aligned} \tag{9}
V˙≤exT[P(A−LC−EKC)+(A−LC−EKC)TP]ex+exT[PE+δ(A−EKC)TCTKT]eξ+eξT[ETP+δKC(A−EKC)]ex+eξT(δETCTKT+δKCE)eξ+(ε1eξTeξ+εδ2θ2)=exTG11ex+exTG12eξ+eξTG21ex+eξTG22eξ+εδ2θ2(9)其中
G
11
=
P
(
A
−
L
C
−
E
K
C
)
+
(
A
−
L
C
−
E
K
C
)
T
P
G
12
=
P
E
+
δ
(
A
−
E
K
C
)
T
C
T
K
T
G
21
=
E
T
P
+
δ
K
C
(
A
−
E
K
C
)
G
22
=
δ
E
T
C
T
K
T
+
δ
K
C
E
+
1
ε
I
r
×
r
(10)
\begin{aligned} G_{11} &= P \left( A - LC - EKC \right) + \left( A - LC - EKC \right)^T P \\ G_{12} &= PE + \delta \left( A - EKC \right)^T C^T K^T \\ G_{21} &= E^T P + \delta KC \left( A - EKC \right) \\ G_{22} &= \delta E^T C^T K^T + \delta KCE + \frac{1}{\varepsilon} I_{r \times r} \end{aligned} \tag{10}
G11G12G21G22=P(A−LC−EKC)+(A−LC−EKC)TP=PE+δ(A−EKC)TCTKT=ETP+δKC(A−EKC)=δETCTKT+δKCE+ε1Ir×r(10)注意到
G
12
T
=
G
21
G_{12}^T = G_{21}
G12T=G21。设拓展状态量
e
t
=
[
e
x
e
ξ
]
e_t = \left[ \begin{matrix} e_x \\ e_\xi \end{matrix} \right]
et=[exeξ],则式(9)可进一步简化为
V
˙
≤
e
t
T
G
1
e
t
+
α
(11)
\dot V \leq e_t^T G_1 e_t + \alpha \tag{11}
V˙≤etTG1et+α(11)其中
G
1
=
[
G
11
G
12
G
21
G
22
]
,
α
=
ε
δ
2
θ
2
(12)
G_1 = \left[ \begin{matrix} G_{11} & G_{12} \\ G_{21} & G_{22} \end{matrix} \right], \quad \alpha = \varepsilon \delta^2 \theta^2 \tag{12}
G1=[G11G21G12G22],α=εδ2θ2(12)可见,为满足李雅普诺夫稳定性,矩阵
G
1
G_1
G1负定即可,即
G
1
≤
0
G_1 \leq 0
G1≤0。
G
11
∈
R
n
×
n
,
G
12
∈
R
n
×
r
,
G
21
∈
R
r
×
n
,
G
22
∈
R
r
×
r
G_{11} \in \mathbb{R}^{n \times n}, G_{12} \in \mathbb{R}^{n \times r}, G_{21} \in \mathbb{R}^{r \times n}, G_{22} \in \mathbb{R}^{r \times r}
G11∈Rn×n,G12∈Rn×r,G21∈Rr×n,G22∈Rr×r;
G
1
∈
R
(
n
+
r
)
×
(
n
+
r
)
G_1 \in \mathbb{R}^{ \left( n+r \right) \times \left( n+r \right) }
G1∈R(n+r)×(n+r)。
令
G
2
=
−
G
1
G_2 = -G_1
G2=−G1,则
G
2
G_2
G2正定,那么
V
˙
≤
−
e
t
T
G
2
e
t
+
α
(13)
\dot V \leq -e_t^T G_2 e_t + \alpha \tag{13}
V˙≤−etTG2et+α(13)
接下来证明为什么只要
G
1
G_1
G1负定(
G
2
G_2
G2正定),系统就稳定。
对于李雅普诺夫函数
V
V
V,可以探究其有界性:
V
=
e
x
T
P
e
x
+
δ
e
ξ
T
e
ξ
≤
λ
max
{
P
}
e
x
T
e
x
+
δ
e
ξ
T
e
ξ
=
λ
max
{
P
}
∥
e
x
∥
2
+
δ
∥
e
ξ
∥
2
≤
max
{
λ
max
{
P
}
,
δ
}
(
∥
e
x
∥
2
+
∥
e
ξ
∥
2
)
=
max
{
λ
max
{
P
}
,
δ
}
∥
e
t
∥
2
(14)
\begin{aligned} V &= e_x^T P e_x + \delta e_\xi^T e_\xi \\ &\leq \lambda_{\max} \left\{ P \right\} e_x^T e_x + \delta e_\xi^T e_\xi \\ &= \lambda_{\max} \left\{ P \right\} \big \Vert e_x \big \Vert ^2 + \delta \big \Vert e_\xi \big \Vert ^2 \\ &\leq \max \left\{ \lambda_{\max} \left\{ P \right\}, \delta \right\} \left( \big \Vert e_x \big \Vert ^2 + \big \Vert e_\xi \big \Vert ^2 \right) \\ &= \max \left\{ \lambda_{\max} \left\{ P \right\}, \delta \right\} \big \Vert e_t \big \Vert ^2 \end{aligned} \tag{14}
V=exTPex+δeξTeξ≤λmax{P}exTex+δeξTeξ=λmax{P}
ex
2+δ
eξ
2≤max{λmax{P},δ}(
ex
2+
eξ
2)=max{λmax{P},δ}
et
2(14)其中
λ
max
{
P
}
\lambda_{\max} \left\{ P \right\}
λmax{P}是矩阵
P
P
P的最大特征值。
另一方面,对于
e
t
T
G
2
e
t
e_t^T G_2 e_t
etTG2et有
λ
min
{
G
2
}
e
t
T
e
t
≤
e
t
T
G
2
e
t
≤
λ
max
{
G
2
}
e
t
T
e
t
\lambda_{\min} \left\{ G_2 \right\} e_t^T e_t \leq e_t^T G_2 e_t \leq \lambda_{\max} \left\{ G_2 \right\} e_t^T e_t
λmin{G2}etTet≤etTG2et≤λmax{G2}etTet代入到式(13)有
V
˙
≤
−
e
t
T
G
2
e
t
+
α
≤
−
λ
min
{
G
2
}
e
t
T
e
t
+
α
=
−
λ
min
{
G
2
}
⋅
max
{
λ
max
{
P
}
,
δ
}
max
{
λ
max
{
P
}
,
δ
}
∥
e
t
∥
2
+
α
≤
−
λ
min
{
G
2
}
max
{
λ
max
{
P
}
,
δ
}
⋅
V
+
α
=
−
κ
V
+
α
(15)
\begin{aligned} \dot V &\leq -e_t^T G_2 e_t + \alpha \\ &\leq -\lambda_{\min} \left\{ G_2 \right\} e_t^T e_t + \alpha \\ &= -\lambda_{\min} \left\{ G_2 \right\} \cdot \frac{ \max \left\{ \lambda_{\max} \left\{ P \right\}, \delta \right\} }{ \max \left\{ \lambda_{\max} \left\{ P \right\}, \delta \right\} } \big \Vert e_t \big \Vert ^2 + \alpha \\ &\leq -\frac{ \lambda_{\min} \left\{ G_2 \right\} }{ \max \left\{ \lambda_{\max} \left\{ P \right\}, \delta \right\} } \cdot V + \alpha \\ &= - \kappa V + \alpha \end{aligned} \tag{15}
V˙≤−etTG2et+α≤−λmin{G2}etTet+α=−λmin{G2}⋅max{λmax{P},δ}max{λmax{P},δ}
et
2+α≤−max{λmax{P},δ}λmin{G2}⋅V+α=−κV+α(15)其中
κ
=
λ
min
{
G
2
}
max
{
λ
max
{
P
}
,
δ
}
,
α
=
ε
δ
2
θ
2
(16)
\kappa = \frac{ \lambda_{\min} \left\{ G_2 \right\} }{ \max \left\{ \lambda_{\max} \left\{ P \right\}, \delta \right\} }, \qquad \alpha = \varepsilon \delta^2 \theta^2 \tag{16}
κ=max{λmax{P},δ}λmin{G2},α=εδ2θ2(16)。
假设有集合
S
=
{
e
t
∣
min
{
λ
min
{
P
}
,
δ
}
⋅
∥
e
t
∥
2
≥
α
κ
}
\mathcal{S} = \left\{ e_t \bigg\vert \min \left\{ \lambda_{\min} \left\{ P \right\}, \delta \right\} \cdot \big \Vert e_t \big \Vert ^2 \geq \frac{\alpha}{\kappa} \right\}
S={et
min{λmin{P},δ}⋅
et
2≥κα}那么当
e
t
∈
S
e_t \in \mathcal{S}
et∈S时,
V
≥
min
{
λ
min
{
P
}
,
δ
}
⋅
∥
e
t
∥
2
≥
α
κ
V \geq \min \left\{ \lambda_{\min} \left\{ P \right\}, \delta \right\} \cdot \big \Vert e_t \big \Vert ^2 \geq \frac{\alpha}{\kappa}
V≥min{λmin{P},δ}⋅
et
2≥κα,即
−
V
≤
−
α
κ
-V \leq - \frac{\alpha}{\kappa}
−V≤−κα。则
V
˙
≤
−
κ
V
+
α
≤
κ
⋅
(
−
α
κ
)
+
α
=
0
\dot V \leq - \kappa V + \alpha \leq \kappa \cdot \left( -\frac{\alpha}{\kappa} \right) + \alpha = 0
V˙≤−κV+α≤κ⋅(−κα)+α=0即
e
t
∈
S
e_t \in \mathcal{S}
et∈S时,
V
˙
≤
0
\dot V \leq 0
V˙≤0,系统一致稳定。且李雅普诺夫函数在时域上的解为
V
(
t
)
=
α
κ
−
α
κ
e
−
κ
t
(17)
V \left( t \right) = \frac{\alpha}{\kappa} - \frac{\alpha}{\kappa} e ^{- \kappa t} \tag{17}
V(t)=κα−καe−κt(17)系统一致有界。
对于集合
S
\mathcal{S}
S的补集
S
ˉ
=
{
e
t
∣
min
{
λ
min
{
P
}
,
δ
}
⋅
∥
e
t
∥
2
<
α
κ
}
\bar { \mathcal{S} } = \left\{ e_t \bigg\vert \min \left\{ \lambda_{\min} \left\{ P \right\}, \delta \right\} \cdot \big \Vert e_t \big \Vert ^2 < \frac{\alpha}{\kappa} \right\} \\
Sˉ={et
min{λmin{P},δ}⋅
et
2<κα}李雅普诺夫函数在时域上的解(式(17))依然成立,依然是一个衰减函数,其将逐渐以速度
e
−
κ
t
e ^{- \kappa t}
e−κt衰减到下限值并过渡进入集合
S
\mathcal{S}
S。
5. 线性矩阵不等式(LMI)与舒尔补定理(Schur Complement)
根据式(12),只要满足
G
1
<
0
G_1 < 0
G1<0,系统即为稳定的。下面引入舒尔补定理:
对于拥有式(12)形式的对称矩阵
G
1
G_1
G1,以下式子等价:
- G 1 = [ G 11 G 12 G 21 G 22 ] < 0 G_1 = \left[ \begin{matrix} G_{11} & G_{12} \\ G_{21} & G_{22} \end{matrix} \right] < 0 G1=[G11G21G12G22]<0
- G 11 − G 12 G 22 − 1 G 21 < 0 G_{11} - G_{12} G_{22}^{-1} G_{21} < 0 G11−G12G22−1G21<0
- G 22 − G 21 G 11 − 1 G 12 < 0 G_{22} - G_{21} G_{11}^{-1} G_{12} < 0 G22−G21G11−1G12<0因此可以将式(12)化简成上述三式的其中一种求解即可。求解得出的 K , L , P , ε K, L, P, \varepsilon K,L,P,ε即可以正确估计系统中的扰动。