Jetson Xavier NX EMMC版本刷机

环境

上位机:Windows 11
下位机:Jetson Xavier NX EMMC(用固态的版本,不带TF卡)

1、硬线连接

在这里插入图片描述

2、上位机配置

下载并安装VMware 17pro
ubuntu 18.04.6 清华镜像
配置虚拟机
执行完第三个链接后,可以在虚拟机中正常使用ubuntu18.04
在这里插入图片描述
下载1.9.3历史版本的sdkmanager
在虚拟机/download目录下执行:sudo apt install ./sdkmanager_1.9.3-10904_amd64.deb
安装会出现问题,执行:sudo apt --fix-broken install
安装完成后可以找到SDKManager程序
(建议直接下载最新版本,或者下载后更新至最新版本)

问题:
1、重启后无网络,无NAT和DHCP服务,参考链接

2、刷机

2.1 进入刷机模式(系统无法进入)

1、上电前(插电源会自动上电,此处不要插电源),使用条线冒连接下图中的第2、3个PIN
在这里插入图片描述
2、打开虚拟机
3、插电源上电,将Xavier用miniUSB线连接上位机电脑,选择连接虚拟机
在这里插入图片描述
【大坑1】这里可能无法识别Xavier,首先排除线的问题。一定要多换几根不同的线,并不是所有的miniUSB都支持数据传输。。。我试了4根线。。。
【大坑2】也可能是虚拟机无法识别USB设备,需要自己查下资料解决
3、使用命令:sdkmanager --archived-versions,打开SDK
【大坑】SDKManager的jetpack版本只会显示几个,不会显示全部,使用上述命令可以选择自己想要的点版本
关于jetpack和L4T版本选取,连接
关于jetpack和L4T版本介绍,链接
最后达到这个所有都打勾的状态就可以下一步了
在这里插入图片描述
4、不要选择配置SDK Components,否则可能基本占满根目录。如果需要配置,这时xavier会进入系统,需要手动完成系统配置,再继续上位机-VMWare中的SDKManager的安装流程
5、刷机完成后可能会用到的指令
查看jetpack版本:sudo apt-cache show nvidia-jetpack
查看l4t版本:head -n 1 /etc/nv_tegra_release
查看l4t依赖的版本设置文件: sudo vi /etc/apt/sources.list.d/nvidia-l4t-apt-source.list
其他参考链接

### 在 Jetson Xavier NX 上部署 YOLOv8 的教程 #### 1. 刷机并配置 TF 卡作为系统盘 由于 Jetson Xavier NXeMMC 存储空间有限,通常建议使用 TF 卡作为系统盘来扩展存储容量。具体操作如下: - 安装支持的 TF 卡驱动程序[^3]。 - 将 JetPack 提供的 Linux 系统镜像写入 TF 卡中。 - 修改 BIOS 设置,使设备从 TF 卡启动。 #### 2. jtop 工具安装与电源管理优化 为了实时监控硬件状态以及防止屏幕休眠影响开发体验,需完成以下步骤: - 使用 `pip` 或源码方式安装 `jtop` 工具[^1]。 - 调整 Jetson 设备的电源策略以禁用自动息屏功能。 #### 3. CUDA 和 cuDNN 的安装 YOLOv8 对 GPU 加速的支持依赖于 NVIDIA 的 CUDA 和 cuDNN 库。按照官方推荐版本执行以下命令: - 安装 CUDA 10.2 及对应版本的 cuDNN 8.0。 ```bash sudo apt-get install cuda-libraries-10-2 libcudnn8=8.* ``` #### 4. PyTorch 环境搭建 PyTorch 是 YOLOv8 所基于的主要深度学习框架之一,在 Jetson 平台上需要特别注意兼容性问题: - 下载适合 ARM 架构的预编译 whl 文件(如 torch-1.8.0-cp36-cp36m-linux_aarch64.whl)。 - 安装必要的 Python 依赖库及其科学计算组件。 ```bash pip install numpy scipy pillow matplotlib opencv-python-headless pip install ./torch-1.8.0-cp36-cp36m-linux_aarch64.whl ``` #### 5. TensorRT 配置与模型转换 TensorRT 是一种高效的推理引擎,用于提升模型性能。以下是实现过程中的关键点: - 解决可能发生的 RuntimeError 错误,通过调整输入张量维度一致性得以修复[^2]。 - 运行脚本将 ONNX 格式的 YOLOv8 模型转化为 TensorRT 支持的形式。 ```python import tensorrt as trt TRT_LOGGER = trt.Logger(trt.Logger.WARNING) def build_engine(onnx_file_path, engine_file_path): with trt.Builder(TRT_LOGGER) as builder, \ builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) as network,\ trt.OnnxParser(network, TRT_LOGGER) as parser: ... ``` #### 6. 测试与验证 最终阶段是对整个流程进行测试,确认模型能够在目标平台上成功加载并运行推理任务。确保数据集路径正确无误,并观察输出结果是否符合预期。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值