开关电源基础09:传递函数和波特图

说在开头:关于自然常数e

我们在之前聊到过,毕达哥拉斯学派的弟子希伯索斯发现了无理数(无限不循环小数,不能用分数表示),并为此付出了生命的代价,同时为我们打开了无理数的大门(史称“第一次数学危机”,直到2000多年后的“戴德金原理”才彻底解决了无理数的这个数学危机)。在众多的无理数中,最为人所熟知的两个无理数常数便是:圆周率π( 3.141592653……)和自然(Nature)常数e( 2.718281828……)。

2200多年前的阿基米德是这么计算圆周率的:已知直径为1的单位圆(周长 = 2*π*r,即圆周率π),如下图所示做内切和外切正多边形,那么圆周长必然介于外切和内切正多边形周长之间。我们可以看到到了正8边形时,内切正8边形和外切正8边形的“空隙”已经比较小,那么正16边型和32边型的精度就能更高了,阿基米德给出了“圆周率”的估计值在223/71 ~ 22/7之间,也即是在3.140845~3.142857之间。

代表“圆周率”的字母π是第十六个希腊字母的小写,也是希腊语 περιφρεια(表示周边、地域或圆周)的首字母。1706年英国数学家威廉·琼斯最先使用“π”来表示圆周率,1736年,瑞士大数学家莱昂纳德.欧拉也开始用π来表示圆周率,从此π便成了圆周率的代名词。

自然常数e从其名字上就能感受到它的神奇,它表示了这个数是“自然存在而非人为创造”。e这个表示自然常数的符号是由莱昂纳德.欧拉(是他,是他,还是他~)命名的,e正是Euler(欧拉)的首字母“e”。但实际上第一个发现这个常数的并非是欧拉本人,而是瑞士数学家雅克比.伯努利(发现了概率论中的大数定律);而雅克比.伯努利的数学家弟弟约翰.伯努利(提出正态分布误差理论)正是欧拉的数学老师(牛人之间是会相互吸引的)。

18世纪初,欧拉试图解决雅各布.伯努利在半个世纪前提出的复利问题:假设在银行存了1 元, 而银行提供的年利率是 100%,那1年后连本带息将得到2块钱。那么现在假设半年就计算一次利息(半年利率为50%,得到利息后马上又存进银行),这种年中计息一次的方案:得到上半年的本息一共1+1*0.5=1.5元, 然后下半年连本带息年末就为(1+1/2)² = 2.25元,即:一年2.25 元钱。那利率周期如果再短一些会怎样呢?我们再来假设每个月结算一次,月利率为1/12,一年本息计算(1+1/12)¹²得到大约 2.61304 块钱,看起来是利息的周期越短, 收益就越高。按照这个趋势,通过1元一年赚1亿元的小目标,那是指日可待啊,不过雅各布.伯努利马上发现随着 n 趋于无穷,对于这样的连续复利存在着一个极限值:

这个极限值欧拉计算出来了小数点后18位:2.71828182845904523。就是说无论计息周期再短,举个栗子,你存1元钱在银行,银行按照年利率100%,1秒钟结算一次利息并将转存,最终一年后得到的钱不会大于自然常数e

这么一看,这个自然常数e虽然有点意思但也很普通嘛,估计没多少人梦想着靠1元钱通过复利赚1亿元这个小目标。然而在自然界中,大多数事物都处于一种无意识连续增长状态中,如果单位时间增长率为100%,那么经过一个单位后将变成原来的e倍。大自然中到处都有对数螺线的身影,如下图即是自然常数e下的一种表现形式,鹦鹉螺,热带低气压(台风)、漩涡星系(例如:仙女座星系)都自然符合自然常数e的规律。

数学家们还发现以e为底数的对数计算是最简洁、最美、最自然的形式,理论上计算机采用e进制的效率最高,只是二进制便于实现而已(三进制的效率更高,因为更接近e,后续有机会聊聊三进制计算机)。e在对数、指数中有特殊的规律,是其中最重要的一种形式。

对于exp(x)指数来说有如下的特性(如下图所示,想起《电感器原理》趋肤效应章节,铜缆趋肤深度的计算原理么?):

  1. exp(x)的导函数就是它自己:exp(x),即:一个函数在任一点的变化率(斜率),恰好等于这个函数在这一点的值(exp(x));
  2. 相反,exp(x)的积分就是它自己:exp(x),即:从负无穷大到x的曲线下方面积也是exp(x)。

可以想象e在微积分中非常重要,同时自然常数e也是物理学中的一个重要数字,它通常出现在有关波(举个栗子:电磁波)的方程之中。欧拉公式在电磁学中应用非常广泛,如果想要理解其物理原理,必须牢记欧拉公式:exp(iθ) = cosθ + isinθ关于虚数/复数的意义,忘记的同学,请参考《阻容感基础:电阻器分类》“写在开头”章节);同时得到了一个被称为史上最完美的数学公式:

这个公式是如此的简洁又如此的重要,将数学中最重要的几个数:e,π,i10,完美的呈现在一个公式中。

exp(iθ) = cosθ + isinθ公式中,我们可以得到对于电路应用非常重要的一些数学结论:

  • 什么是传递函数

我曾经在阻容感专题中吹了个牛:要在不用“高等数学”的基础上把硬件基础知识给讲清楚了,还要把那些扯出来的谎给圆回来。但到了这个节骨点,我只能举双手双脚投降,然后美滋滋地祭出自然常数e,以及指数函数来分析反馈环路这部分内容。

我们在前面的章节已经有了一个传递函数,直流传递函数:Vo/Vin。当然传递函数还有很多不同种定义,例如在《电源变换器基础》中他讨论的阻容(RC)串联充电电路,如下图所示,在开关导通时,给RC电路施加了一个阶跃电压Vi,即系统的输入或激励,然后定义电容器两端电压为输出或响应:Vo(t),因此可得传输函数(输出与输入之比)为:Vo(t)/Vi = 1 – exp(-t/RC)。

——从这个公式我们得到了电容器充电的时间常数τ = 1/RC

传递函数并非“输入/输出”都是“电压/电压”或则其它相同物理量;例如电阻检测,输入是电流输出是电阻上的电压,此时传输函数就是有单位的:Ω。开关电源环路中的PWM控制部分:输入是控制电压,输出是一个无量纲的占空比,此时传输函数单位是,因此我们了解到传输函数是一个广义的概念,它体现的是一个因果关系。

那怎样才能得出上述RC电路的传递函数呢?根据基尔霍夫电压定律可得:Vi = Vres(t)+Vcap(t) = i(t)*R+Q(t)/C = (dQ(t)/dt)*R + Q(t)/C,可得:dQ(t)/dt + Q(t)/(R*C) = Vi/R,那我们来计算这个一阶微分方程,通过指数函数y(x) =exp(x)的性质,可得: Q(t)= C*Vi*(1-exp(-t/RC))

——关于一阶微分方程,有兴趣的胖友可以自行推导计算下。

1,时域和频域分析

任何的电器参数都可以写成实部和虚部之和,因为:电阻(R)是实在的损耗,而电抗(jωL和1/jωC)是虚的损耗;所以我们用复数来表示:A = Re + j*Im,其中Re是A的实部,Im是A的虚部。根据定义我们可以得到A的幅值和相角:

1. 复数的幅值:|A| = √(R²e+I²m)

2. 复数的相角:Φ = 1/tan(Im/Re)rad

复阻抗在复电压下表现需要基本电学定律的复数形式描述:V(ωt) = I(ωt)*Z(ωt)。再跟指数函数结合:

1. exp(iθ) = cosθ + i*sinθ

2. exp(-iθ) = cosθ - i*sinθ

好,我们理解了电气参数的复数定义,那么我们再来看输入激励的定义呢?

理想情况下我们一般要求输入信号是重复性(周期性)的,这样才能有完全稳定的输出。但在现实世界中所有的激励(包括时钟信号)都不是真正重复性(周期性)的:因为真正周期性波形是永远存在(无始无终)的,而且要求施加的每个波形也完全一样;然而宇宙还有起点呢,显然现实世界中并不存在这种周期性信号。

那么我们怎么去认定一个现实激励是重复性的呢?如果激励施加的时间足够长:从施加时刻起到暂态过程完全结束(进入稳态),这个过程激励一直存在,那么可认为激励是重复性的

对于包含电抗元件的网络(类似RC电路),时间是传递函数中的变量,在外加激励时必须观察输出如何随时间变化,这称为时域分析;随着电路复杂度的增加,时域分析会变得非常复杂。所以我们寻找另外一种分析方法——频域分析:任何重复性(周期性)的波形,无论形状如何,都可以分解成若干不同频率正弦波的叠加(利用傅里叶技术展开,具体分析参考:《从频域出发理解信号》)。

——关于频域分析,我们将外加激励(波形)先分解成频率分量,然后在解析系统对每个频率分量的响应;因为不同分量之间是相互正交(不相干),因此可以单独分析和叠加

1.1 拉普拉斯变换

在传统复数平面交流分析中,电压和电流都是复数,而频率是实数;为了可以分析任意波形,我们创造了复数频率平面:s = σ+jω,称为s平面,s平面是频域分析更广义的形式。在s平面中,感抗:ZL = sL,Zc = 1/(sC)。而电阻与s平面无关,因为电阻与频率无关。

那么复数电路和激励在s平面上的响应,需要应用更简洁的s平面电学定律:V(s) = I(s)*Z(s)。使用s平面方法可以轻松解决由任意激励产生的微分方程,比时域方法更加简洁方便,这种解法就是:拉普拉斯变换。

——频域和时域是等价的,理想情况下,在频域中并未损失任何信息

我们首先将外加时域相关激励(脉冲或周期性函数的电压/电流)映射到复频域(s平面)中,并利用s平面阻抗将整个电路变换到s平面;然后,应用s平面的基本电学定律(例如欧姆定律)进行分析,最后求解s的微分方程;在复频域(s平面)解微分方程比时域中容易很多,从而得到频域中的电路响应。如下图所示。

空口白话已经说明不了什么了,接下来就要举个很必要的栗子:假设输入信号为u(t),输出为v(t),它们之间的关系由二阶微分方程给出:

如果U(s)是u(t)的拉普拉斯变换,V(s)是v(t)的拉普拉斯变换,那么微分方程在频域可简化(将微分方程转化成了代数方程)为:

那么我们可以得到:V(s) = G(s)*U(s)。

对应在时域中传递函数f(t)也有类似形式:v(t) = f(t)*u(t)。

根据上面G(s)方程的解,就可以很容易计算出激励的响应V(s)。

2,干扰和反馈

电源的输入电压和输出负载电流有可能发生突变,但是此时我们需要保证输出电源电压的稳定,这就是电源的抗干扰。然而实际上对于BUCK电源拓扑来说,输入电源电压Vin的突变并不会造成输出电源电压Vo的变化,因为占空比D = Vo/Vin,当Vin突变时占空比D同步调整至对应正常的输出电压Vo水平,如下图所示。

如下图所示,如果输出电源负载突然变化,为了成功地矫正输出电压,需要如下步骤:

1. 电源控制器首先需要检测到输出变化;

——电感器和输出电容能量释放有一个过程,而且输出电压采样需要一段时间

2. 需要矫正占空比;

——同样改变占空比也需要时间,开关频率高则矫正速度更快

3. 必须等到电感器和输出电容的储能完全释放(负载变轻)或完全储存(负载变重),并满足最终的新稳态需求;

——需要将多余的储存在电感器和输出电容器上的能量消耗掉,或则电感器和输出电容器上亏空的能量补上,才能恢复正常输出电压

4. 最后,输出重新稳定在新的直流值,此时输出稳定前电路已经历了若干延时。

——那怎样才能使得延时最小,或则说响应最快呢?

其实对于开关电源环路响应来说,环路响应太慢则会导致响应不及时而超出输出电源电压范围;而反馈环路响应的速度太快或太慢都有带来问题:太快会导致输出振铃(调整过度),甚至导致电源电路进入振荡状态。

——对于输出负载变化:一般定义负载从50%~100%变化,而不会0%~100%的突变

——另外电源控制芯片并不能确定:1,环路中信号是被环境干扰还是输出电源的反馈;2,该反馈信号是即时还是延迟的;所以就电源控制芯片本身来说,它只是看到环路回馈并做出调整,可能跟需要调整的方向相反,从而增强振荡的幅度;此时控制环路是完全混乱且不稳定的。

研究任意干扰衰减或放大的传播过程称之为反馈环路分析。实际上通过在合适的点(在反馈分压上拉电阻与输出电源之间串接一个10Ω电阻器)故意注入一个小干扰,并观察返回到该点的幅值和相角,就可以测试反馈环路的稳定裕度(开环波特图),若发现干扰本身增强,则会导致系统不稳定,如果能改进反馈环路,设法消除或抑制该频点的反馈响应,那么系统将会变得稳定。

注入系统的幅值不能太大,否则控制电路的某些部分可能会饱和(例如放大电路),使其不能进一步修正,如果激励和响应都足够小,任何系统都可以用线性系统来近似(输入加倍,那么输出也会加倍);但是注入的干扰幅值也不能太小,否则会被开关噪声所淹没;一般为稳态值的5%~10%。

3,RC滤波器的传递函数

RC滤波网络的频率分析如下图所示,其给出了基于简单阻抗比的传递函数推导过程,并扩展到了s平面;我们设s = jω,并绘制出:1,传递函数的幅值(增益);2,传递函数的相角(相位)。这种组合的幅相曲线图称为波特图,并从波特图中我们可以知道如下一些结论。

1. 通常将相角(rad,θ = ωt)转换成角度,因为大多数人更习惯使用角度:角度 = (180/π)*弧度;同样角频率ω也转换成常用的频率f:f = ω/2π;

2. 增益是简单的比值而非分贝(dB);

3. 改变幅相图的坐标类型,可以使得幅频特性(增益曲线)在对数坐标系下变成一条直线;并且在如下两种情况下的幅频特性都是直线:

1, 增益用简单的比值表示(Vo/Vin),y轴使用对数坐标;

2, 增益用分贝(20*log|Vo/Vin|)表示,使用直角坐标。

4. 在使用对数坐标时,0的对数没有意义,因为log0 -> -,因此对数坐标的原点不能为0;可以是非常接近0(举个栗子:0.0001Hz);

5. 在高频时,频率每增加10倍,增益衰减为原来的1/10,10:1的电压比对应20分贝(20*log(10) = 20dB),即:高频时增益以-20dB/dec的斜率下降;如果x轴和y轴的坐标比例相同,那么幅频特性与x轴的实际夹角为40°,那么该曲线的正切值tan(-45°) = -1,因此-20dB/dec的斜率也简称为-1斜率;

——注意:电压增益是20*log(Vo/Vin),能量增益是10*log(Po/Pin);20dB/十倍频速率下降的电路,称为一阶滤波器

——类似的,当滤波器有两个电抗元件(一个电容器+一个电感器)时,斜率变成-40dB/dec,称为-2斜率

6. 上图右侧幅频曲线中,灰色加粗的直线是渐进线,可以看到在f = 1/(2πRC)处是一个转折频率,该点对应RC滤波器的谐振频率(极点);

——对于一阶滤波器来说,实际曲线与渐近线之间的偏差通常很小,最恶劣情况下增益误差只有-3dB(转折频率处),渐近线是一个有效的捷径,用于简化波特图和分析过程

7. 对于相频渐进线来说有两个交接频率:一个在幅频特性转折频率的1/10处,另一个在转折频率的10倍处;每个交接频率点的相移是45°,总相移是90°,跨越了20倍频(在幅频特性转折频率点对称);

——在幅频特性转折频率点的相移总是45°,即总相移的一半,不管是渐近线还是实际曲线都一样

8. 既然有极点,那么就有零点,其特性与极点刚好相反:增益和相角都从该点开始增加;

9. 对于RC滤波器来说,输出Vo在任何频率下一直小于输入电压Vin,从直观上来说是正确的;但对于包含两类电抗元件(L和C)电路,在某些频率下输出电压Vo实际上能够超过输入电压Vin,通常这些频率的响应就是所谓的谐振。

4,积分运算放大器

积分运算放大器是所有电源反馈环路中补偿网络的基本模块,如下图所示,反向运算放大器的反馈路径上只有一个电容器,在稳态直流条件下,电容器完全不起作用,因为其直流增益是无穷大(直流对运放无反馈路径),我们计算该电路的传递函数,发现在f= 1/(2πRC)处是一个特别的频点,但该点并非是转折频率(零点或极点),而是在该点上的增益刚好为1(0dB),此频点fp0是积分器的穿越频率(称为积分器的截止频率)。

——下图中坐标图形状为几何正方形,两个坐标轴划分的网格数相等,使得x轴和y轴在所有方面均相同,斜率为-1(曲线以-45°角下降)。

积分器在0Hz频率处有一个单极点(传递函数分母为0称为极点),但是0Hz频率在对数坐标下无法表示;如果没有0Hz频率极点,系统的直流(低频)增益会非常差,积分器是获得尽可能高的直流增益的最简单的方法。在任何电源拓扑中,高直流增益可以获得良好的稳态调整。

如上图所示,我们可以建立任意频点A与穿越频率fp0之间的关系:f p0 = GainA*fA。

举个栗子:斜率为-1的直线,频率10KHz时增益为26dB,截止频率时多少?

已知GainB = 20log(Gain),因此:

——如此,我们便可以通过任意频率点的增益,来计算穿越点fp0即截止频率:fcross的位置

5,LC滤波器传递函数

BUCK电源拓扑的后级是电感器L+滤波电容器C的结构(即LC滤波器);然而BOOST和BUCK-BOOST电源拓扑并没有后级LC滤波器结构,电感器和电容器之间间隔这MOS管或则二极管,但是经过处理后也可以将BOOST和BUCK-BOOST电源拓扑变成输出含有LC滤波器的标准模型,如此BOOST和BUCK-BOOST可以当成标准BUCK电源拓扑处理,唯一区别是BOOST和BUCK-BOOST电源拓扑的真实电感L被标准模型中的一个等效电感L*(1-D)²所替代。

如下图所示,简单的LC滤波器传输函数 = 1/[LC*s²+(L/R)*s+1],有如下特性:

1. 对于大多数实际应用来说,可以假设转折频率与负载电阻或线路上的电阻(寄生电阻和负载)无关,即滤波器的谐振频率(转折频率,极点)是LC滤波频率:1/(2π√LC);

2. 高频时LC滤波器的增益以斜率-2下降,相角也减小,总相移为180°,因此转折频率1/(2π√LC)处有一个双重极点;

——RC电路的单极点增益斜率是-1,总相移是90°,LC滤波传递函数是s2的函数,所以有两个极点

3. 如上图定义Q = R*√(C/L)是品质因数,实际上它确定了响应曲线在交接频率处的峰值大小;假如Q=20,那么谐振频率处的输出电压是输入电压的20倍,在对数坐标中为20*logQ;

——一般认为Q值很大则滤波器欠阻尼,若Q值很小则滤波器过阻尼;当Q=0.7073dB)时,就是临界阻尼;在临界阻尼下意味着在谐振频率处幅值下降30%;类似的+3dB则是1.414倍,即上升40%

4. 计算LC滤波器传递函数:

谐振频率fp = 1/(2π√LC),Q = R*√(C/L),代入传递函数公式可得:

那么我们可得当f =fp时传递函数 = -jQ,其幅值为品质因素Q,而相位为-90°;

5. 我们上面分析电阻对转折频率没有什么影响,然而电阻对Q有很大的影响,根据Q = R*√(C/L)公式可得,L和C的串联寄生电阻越大则Q值越小;另一方面,在低负载输出时,并联在C两端的电阻R比较大,那么Q值会增大。

——我们需要明确的是,并联大电阻与串联小电阻等效,反之亦然;串联电阻大则流经LC的能量消耗在电阻上就较大(I²*R),反之并联电阻大则流过电阻的能量就较小(U²/R

6. 用渐近线绘制LC滤波幅频特性,如果用同样的方法可能产生很大的误差,Q值越大误差越大,因为如果Q值很大,在非常接近谐振频率的区域内会发生相移突变(180°),曲线在转折频率的十倍频程(1/10到10倍)内不能平缓变化;

——突变的相移会导致电源稳定性的问题,因此从平缓相移的角度来看,Q值一定要小,避免电源不稳定

——L增加则Q减小,C增加则Q也增加;如果我们在电源输出加非常大的输出滤波电容器C,那么根据Q = R√(C/L),必须增加L以平衡C增加带来的Q增加;同时从这个角度也告诉我们输出滤波电容器并非越大、越多越好,如果放置过大(C增加)过多(R增加),会导致输出滤波器响应中产生很高的峰值,相移会突变,从而导致电源不稳定

7. 与RC滤波器不同,在转折频率附近区域的输出电压Vo会大于输入电压Vin,但其条件是Q>1;或则我们采用阻尼系数来定义,阻尼系数 = ζ= 1/(2Q);高Q值对应低ζ。

6,传递函数和零极点

好,上面已经列举了好多个栗子,我们再从数学层面来看下传递函数:

s = jω来获得系统的频率响应,那么可得:

在分子上的使得分子为零的点:Z1Z2…Zm就是传递函数的零点,而在分母上使得分母为零的点:P1P2…Pn是传递函数的极点

频域传递函数H(jω)对应时域单位阶跃响应为y(t),以最简单的一阶传递函数为例:H(jω) = 1/(σ+jω)(s = jω, σ = 0),通过拉普拉斯逆变化(不懂也没关系,就看看)y(t) = exp(-σt) *u(t)所以由时域公式可得,当σp> 0则左半平面的极点是收敛的(t ->∞,y(t) ->0),若σp < 0则右半平面的极点不收敛(t -> ∞,y(t) -> ∞)

我们回过头再来看RC低通滤波器,G(s) = 1/(RC*s+1),那么其对应的极点是:s = -1/(RC),从左上图可知其处于坐标系的左半平面(如上分析:由于s = jω,所以σ = 0,那么以坐标轴为中心,左侧为收敛区域,右侧为发散区域),所以RC低通滤波器是收敛系统;但是在电路系统中,s = jω,所以可得:s = jω = -1/(RC),ω = j*1/(RC),我们知道j表示:相移90°,角频率是:1/(RC)。所以对应到RC低通滤波器来说,转折频率为1/(RC);好,那么将s = jω = j*1/(RC)代入低通滤波器传递函数,G(jω) = 1/[RC*j*1/(RC)+1] = 1/(j+1)。可得:| G(jω)| = 1/√(1+1) = 1/√2,∠G(jω) = -45°。

——s复数平面对应的H(s)的零点和极点(s为复数),但是在频域转换中s = jω(是虚数),其对应的频率存在转折效应,但并不会使得传递函数的分母或分子真的为零

零点与极点在某些方面是的性质是相反的,比如:零点使得增益和相位随着频率的增大而增加,而极点相反(我们从上面的传递函数H(s)数学公式中得出),进一步可得,零点可抵消与之同频率的极点。如下图所示,将RC和LC滤波器结构中的R和C以及L和C的位置变化一下,我们就可以得到高通滤波器。RC高通滤波器传递函数:G(s) = RC*s/(RC*s+1),

1. 从该公式可知,有一个单零点:s = 0,可得零点的ω = 0(频率:f = 0Hz);

2. 单极点:s = -1/(RC);所以对应频率s = jω,极点的ω = ω0 = 1/(RC);

3. 所以看到其频幅增益曲线随着频率一开始从零点开始以20Db/dec的斜率向上,一直到ω0 = 1/(RC)的极点处,极点抵消了零点的频幅增益效果,增益曲线斜率变为0;

4. 由于一个极点/零点对应的相移是90°,转折频率处的相移是45°(从ω0/10到10*ω0的相移是90°),最终叠加的相移是0°。

再举个栗子:如下图LC高通滤波传递函数:G(s) = RC*s²/[s² + (L/R)*s + ω²0],从s复平面出发解得有一个双重零点s = 0,和一个双重极点(忽略R的影响):s = jω0。其频幅增益曲线随频率首先以40dB/dec的斜率上升(双零点,所以斜率加倍),一直到ω0处有一个双重极点抵消了双重零点的效果,增益曲线斜率变为0。两个极点/零点对应的相移是180°,在转折频率处的相移是90°(从ω0/10到10*ω0的相移是180°),最终叠加的相移是0°。

6.1 零极点的作用

从上面的栗子中,我们似乎看到了一些零极点的作用。下面我们来做一个总结:

1. 极点和零点处在同一增益曲线上(同一传递函数电路),对增益的影响沿着横轴从左到右逐渐积累(根据10倍频率的横轴,频率由小到大变化);

——假如频率从0.0001Hz开始(0点频率画不出),直到很高频率,首先遇到一个双重极点,此时增益曲线以-2-40dB/dec)的斜率下降,然后遇到一个零点,增益曲线斜率将变成-2+1 = -1,此后增益曲线以-1-20dB/dec)的斜率继续下降,所以一个零点只能抵消一个极点的影响

——相角也是一样的累加,因为相移发生在谐振频率的20倍频处,在双重极点处,相位变化非常突然:开始相角为0°逐渐趋向-180°,但从单零点的1/10倍频率处开始,相角逐渐增加,最终在高频处的相角 = -180°+90° = -90°

2. 对于不同增益曲线(来自于级联的各级电路)的极点和零点,总增益分贝数等于各增益分贝数相加。

——假如在某个频率处,一条增益曲线有一个双重极点,另一条增益曲线有一个单零点,则总增益曲线在此转折频率处只有一个单极点;我们可以认为零点和极点可以相互毁灭(可以设计零点去弥补特定频点的极点,消除其影响),因为零点和极点以各自形式累加,但是由于特性相反,可以相互抵消

  • 波特图

我们在上一章节分析了传递函数,里面看到了根据传递函数绘出的增益和相角关系的坐标图,这两个图就是波特图。但是这两个图对我们来说又有什么用呢?接触过开关电源设计的同学,应该听说过电源是不是稳定,要看波特图(伯德图);然后看相位裕量和增益裕量是否满足要求。这又是凭什么?

1,波特图是什么

对于没有学过控制论的胖友们首先需要初步了解下波特图是啥,波特图是由贝尔实验室的荷兰裔科学家亨德里克·韦德·波特在1930年发明;波特用简单但准确的方法绘制增益及相位的图,因此他发明的图也就称为波特图(除肖特基外,又一个名垂千古的机会被波特抢走了,让我出生在那个年代,嘿,我也发明不了这个图),我们再来总结回顾下波特老爷子的思路:

1. 波特图幅频图的频率用对数log尺度表示,增益部分一般都用功率分贝值来表示,也就是将增益取对数后再乘以10;

——由于增益用对数来表示,因此传递函数乘以一常数,在波特增益图只需将图形的纵向移动即可,两个传递函数的相乘,在波特幅频图就变成图形的相加,表示起来非常简单;电源环路的传递函数往往有多个传递函数相乘所得,在波特图中只需简单叠加即可

2. 幅频图纵轴0分贝以下具有负增益裕度(负反馈)、属稳定区,反之属不稳定区:log(a*b) = loga+logb;

3. 波特图相频图的频率(Hz)也用对数log尺度表示,而相位部分的单位一般会使用度(角度°,而非相角Rad)。

——配合波特相频图可以估算信号进入系统后,输出信号及原始信号的比例关系及相位

2,画一个波特图

2.1 RC低通滤波器模型

我们又要拿RC低通滤波器做栗子了,滤波器的作用是对不同频率输入信号,实现不同的增益和相移;我们关注的是:在特定的频率内,到底有怎样的增益和相移。如下图所示为RC低通滤波器以及传递函数,G(jω) = Vo/Vin = (1/jωC)/[R+(1/jωC)] = 1/( jωC*R+1) ω0 = 1/(RC),假设a = ωC*R,那么可得1/(1+aj) = 1/(1+a²) – j*a/(1+a²)

如下图所示,我们得到传递函数G(jω)的幅值和相位的大小:

2.2 RC低通滤波电路对频率响应

根据 传递函数幅频特性:|G(jω)| = 1/√[1+(f/f0)²],可以看到1和f/f0之间的关系,会使|G(jω)|有不一样的结果:

1. 当f/f0 << 1时(f < f0/10):输入信号频率远小于转折频率(谐振频率),G(jω)的幅值(增益)和相位的f/f0这一项可以忽略,可以得到:|G(jω)| = 1,而相位θ也非常小,接近0;

——在f非常小时,输出Vo跟随输入Vin的幅值以及相位没有变化。

2. 当f/f0 = 1时:输入信号频率等于转折频率(1/(2πRC)),此时幅值|G(jω)| =1/√[1+(f/f0)²] = 1/√2 = 0.707(3dB),θ = -arctan(f/f0) = -arctan(1)  = -45°;

3. 当f/f0 >> 1时(f > 10*f0):输入信号频率远大于转折频率(谐振频率),G(jω)的幅值(增益)和相位式子的f/f0这一项趋于无穷大,可以得到: |G(jω)| =1/√[1+(f/f0)²] = 0,而相位θ = -arctan(f/f0) = -arctan(∞)  = -90°;

好,我们得到了最重要的三个点的幅频和相频位置了;针对RC低通滤波器,得到如下结论:输入信号的频率越高,输出信号的增益越低(幅值越小),而且相位滞后越大。

2.3波特图

我们连接幅频图以及相频图的那几个特殊点,就能得到传递函数的渐近线。不过在这之前必须要将X、Y轴转化为对数坐标:横轴用lgf,纵轴用20lg(A)来描述。将RC低通滤波电路传递函数的增益表达式改为:20lg|G(jω)| = 20lg(Vo/Vin) = 20lg{1/√[1+(f/f0)²]} = 20lg1 – 20lg{√[1+(f/f0)²]}= -20lg{√[1+(f/f0)²]};幅频和相位对数特性图如下所示。

写在最后

写了这么多的篇幅,我也不知道是否讲清楚了传递函数和波特图,不过这不是问题,关键是你是否理解了传递函数和波特图,当然如果你还不明白这俩玩意,也不是说你的理解能力有问题,而可能是我的理解能力有问题,从而导致写出来的这篇文章逻辑有问题。所以没看懂这章的胖友们也不用急,可以自行上网查找相关资料学习。

本章部分相关内容和图片参考自:Sanjaya Maniktala -《精通开关电源设计》。下一章《电源反馈环路》。

  • 3
    点赞
  • 31
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
在Matlab中,可以使用bode函数来画传递函数波特图。首先,需要使用tf函数创建传递函数对象。对于连续传递函数,可以使用tf(numerator, denominator)来创建,其中numerator是分子多项式的系数,denominator是分母多项式的系数。对于离散传递函数,可以使用tf(numerator, denominator, ts)来创建,其中ts是采样时间。接下来,可以使用bode函数来绘制波特图,例如bode(sys),其中sys是之前创建的传递函数对象。最后,可以使用legend函数来添加图例,以区分不同的传递函数。下面是一个示例代码: ``` Ca = tf(\[1,0\],\[1 0 (2*pi*250)^2\]); Cd = c2d(Ca,0.001,'tustin'); bode(Ca, Cd); legend('Ca','Cd') ``` 这段代码创建了一个连续传递函数Ca和一个离散传递函数Cd,并使用bode函数绘制了它们的波特图,并使用legend函数添加了图例。你可以根据自己的传递函数进行相应的修改和绘制。 #### 引用[.reference_title] - *1* *3* [matlab函数用法:传递函数tf,波特图bode,离散化c2d](https://blog.csdn.net/weixin_43467525/article/details/131218748)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [传递函数波特图](https://blog.csdn.net/u010486560/article/details/104977106)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值