五大经典智能算法实现机器人路径规划,包含简单路径与复杂路径,详细对比实验...

本文介绍了五大经典智能优化算法(PSO、GA、DE、GWO和SSA)在机器人路径规划中的应用,展示了在简单和复杂路径下的性能,并通过收敛曲线对比了算法的优劣。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本期文章采用五大经典的智能优化算法,对机器人路径进行规划。

五大经典算法分别是:粒子群算法(PSO),遗传算法(GA),差分进化算法(DE),灰狼优化算法(GWO),麻雀优化算法(SSA)。

学会这五种算法后,其他任何智能优化算法可以随意替换!地图也是可以随意更改!

参考一些论文,还可以将改进的智能算法用于机器人路径规划中,突出改进智能算法的优势!

接下来先上结果图:其中,红线表示遗传算法,黄线表示麻雀算法,蓝线表示粒子群算法,绿线表示差分进化算法,青线表示灰狼算法。

简单路径规划结果

8cc065b41b85cfe7b2b3aae242e8c683.gif

04f5b11eca608aca5cc67b60647a8be1.png

b25ebe93abe5f3d649bc4f66ad3a142c.png

复杂路径规划结果

7d655a044e258a675e437c25db164244.gif

470ae8ebbe3cf877b0a0a7e252b33b06.png

370586ae84b2bb78d389949c7fc8dfaf.png

在复杂路径下,其实更能展现一个算法的优劣!因此可以将改进的智能算法用于此模型中,算法替换十分简单!

部分代码展示

clc
clear
close all
tic
%% 地图
G=[0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0; 
   0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 
   0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0; 
   0 0 0 0 0 0 0 1 1 0 0 0 1 0 1 1 1 1 0 0; 
   0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0; 
   0 1 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0; 
   0 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0;
   0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 
   0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 
   0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0; 
   0 0 0 0 0 0 0 1 1 0 1 1 0 0 1 0 0 0 0 0; 
   0 0 0 0 0 0 0 1 1 0 1 1 0 0 1 0 0 0 0 0; 
   0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0; 
   0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0; 
   1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0; 
   1 1 0 1 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0; 
   0 0 0 0 0 0 1 1 0 1 1 1 0 0 0 0 0 1 1 0; 
   0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0; 
   0 0 0 1 1 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0; 
   0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0;];


num = size(G,1);
for i=1:num/2  
    for j=1:num
        m=G(i,j);
        n=G(num+1-i,j);
        G(i,j)=n;
        G(num+1-i,j)=m;
    end
end
%% 
S = [1 1];   
E = [num num];  
G0 = G;
G = G0(S(1):E(1),S(2):E(2)); 
[Xmax,dimensions] = size(G); X_min = 1;         
dimensions = dimensions - 2;            


%% 参数设置
max_gen = 100;    % 最大迭代次数
num_polution = 50;         % 种群数量


fobj=@(x)fitness(x,G);
[Best_score,Best_pos,GA_curve]=GA(num_polution,max_gen,X_min,Xmax,dimensions,fobj,G);
%结果分析
Best_pos = round(Best_pos);
disp(['GA算法寻优得到的最短路径是:',num2str(Best_score)])
route = [S(1) Best_pos E(1)];
path_GA=generateContinuousRoute(route,G);
path_GA=GenerateSmoothPath(path_GA,G);  
path_GA=GenerateSmoothPath(path_GA,G);


[Best_score,Best_pos,SSA_curve]=SSA(num_polution,max_gen,X_min,Xmax,dimensions,fobj,G);
%结果分析
Best_pos = round(Best_pos);
disp(['SSA算法寻优得到的最短路径是:',num2str(Best_score)])
route = [S(1) Best_pos E(1)];
path_SSA=generateContinuousRoute(route,G);
path_SSA=GenerateSmoothPath(path_SSA,G);  
path_SSA=GenerateSmoothPath(path_SSA,G);


[Best_score,Best_pos,PSO_curve]=PSO(num_polution,max_gen,X_min,Xmax,dimensions,fobj,G);
%结果分析
Best_pos = round(Best_pos);
disp(['PSO算法寻优得到的最短路径是:',num2str(Best_score)])
route = [S(1) Best_pos E(1)];
path_PSO=generateContinuousRoute(route,G);
path_PSO=GenerateSmoothPath(path_PSO,G);  
path_PSO=GenerateSmoothPath(path_PSO,G);


[Best_score,Best_pos,DE_curve]=DE(num_polution,max_gen,X_min,Xmax,dimensions,fobj,G);
%结果分析
Best_pos = round(Best_pos);
disp(['DE算法寻优得到的最短路径是:',num2str(Best_score)])
route = [S(1) Best_pos E(1)];
path_DE=generateContinuousRoute(route,G);
path_DE=GenerateSmoothPath(path_DE,G);  
path_DE=GenerateSmoothPath(path_DE,G);


[Best_score,Best_pos,GWO_curve]=GWO(num_polution,max_gen,X_min,Xmax,dimensions,fobj,G);
%结果分析
Best_pos = round(Best_pos);
disp(['GWO算法寻优得到的最短路径是:',num2str(Best_score)])
route = [S(1) Best_pos E(1)];
path_GWO=generateContinuousRoute(route,G);
path_GWO=GenerateSmoothPath(path_GWO,G);  
path_GWO=GenerateSmoothPath(path_GWO,G);




%% 画寻优曲线
figure(1)
plot(GA_curve,'k-o')
hold on
plot(SSA_curve,'y-^')
hold on
plot(PSO_curve,'b-*')
hold on
plot(DE_curve,'g-P')
hold on
plot(GWO_curve,'c-v')
legend('GA','SSA','PSO','DE','GWO')
title('简单路径下各算法的收敛曲线')

代码目录

1304bb0f119d067bc102ad76f8e51b07.png

其中simplemain.m是简单路径规划,complexmain.m是复杂路径规划。运行这两个脚本文件即可!

点击下方卡片获取更多代码!

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

淘个代码_

不想刀我的可以选择爱我

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值