一文读懂微生物组

本文介绍了微生物组的概念及其对人体健康的重要性,特别强调了肠道菌群在代谢、疾病预防和治疗方面的关键作用。文中还提到了人类微生物组计划以及该领域的未来发展前景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

什么是微生物组

微生物组学是指研究动植物体上共生或病理的微生物生态群体。微生物组包括细菌、古菌、原生动物、真菌和病毒。研究表明其在宿主的免疫、代谢和激素等方面非常重要。

image
图中展示了微生物组在人类生活的方方面面(图片链接见文末)

常见的英文词汇有microbiota, metagenome, microbiome这三个。想要成为专业人士,先读读《Microbiota, metagenome, microbiome傻傻分不清》

人类微生物组计划

image
人体表微生物组(图片原始链接见文末)

人体内有两个基因组,一个是从父母那里遗传来的人基因组,编码大约2.5万个基因;另一个则是出生以后才进入人体、特别是肠道内的多达1000多种的共生微生物,其遗传信息的总和叫“微生物组”,也可称为“宏/元基因组”,它们所编码的基因有100万个以上。两个基因组相互协调、和谐一致,保证了人体的健康。因此,在研究基因与人体健康关系时,一定不能忽略共生微生物基因的研究。

科普中国:人类微生物组计划,6分钟带你读懂微生物组

微信中引用视频清楚度不高,复制下方链接在网页中打开可看高清版
https://v.qq.com/x/page/r0554hp5slv.html

image
人体肠道内上千种微生物组是人体微生物组的主体。此外口腔、皮肤、阴道等均为人体微生物组的重要组成部分。

image
改变人的基因比较困难,但改变微生物组相对容易,它们是理想的药物靶点。现有研究表明,很多药物会引起菌肠变化,可能正是通过改变肠道菌群起作用。

image
image
末来微生组将在人类健康评估监测、新药研发、个体用药,慢性病的早期诊断等方面取得突破性进展。

显微镜下的微生物世界

以前看的很多微观世界,是CG重建的动画,虽然效果够炫,但可能与现实相差较大。

显微镜下的微生物世界,更真实的微观世界
https://v.qq.com/x/page/r0538tejncd.html

精准医学的新前沿:人体微生物组,赵立平

上海交大的赵立平教授,2014年当选美国微生物科学院院士,在微生物组研究走在世界前列,最早在Nature reviews上发文提出微生物组关联分析(MWAS),也是中国微组的主要领导者。
花30分钟,看一场赵教授的报告,绝对可以让你对人体微生物组有全新的认识。

https://v.qq.com/x/page/f0354s7ejf8.html

主要观点:
- 肠道菌群的微生物数据可达人体细胞数量的1 ~ 10倍,而基因种类可达10 ~ 100倍。
- 肠道菌群主要通过代谢物来影响人类各项生理活动,我们知道的有各种维生素等,近期研究表明与肥胖、抑郁、糖尿病、癌症均有明显联系。
- 相同药物对不同人疗效不同,除了人体遗传因素外,肠道菌群可能是主因。

Reference

  1. https://en.wikipedia.org/wiki/Microbiota
  2. http://kellybroganmd.com/wp-content/uploads/2014/04/Origins-Microbiome.jpg
  3. https://timgsa.baidu.com/timg?image&quality=80&size=b9999_10000&sec=1507948599&di=4171df8840af33584b7da7dd7b475259&imgtype=jpg&er=1&src=http%3A%2F%2Fpic.biodiscover.com%2Ffiles%2Fi%2F7d%2F201605160916208777.png

写在后面

为鼓励读者交流、快速解决科研困难,我们建立了“宏基因组”专业讨论群,目前己有国内几十位PI,两百多名一线科研人员加入。参与讨论,获得专业指导、问题解答,欢迎分享此文至朋友圈,并扫码加创始人好友带你入群,务必备注“姓名-单位-研究方向-职务”。技术问题寻求帮助,首先阅读如何优雅的提问学习解决问题思路,仍末解决推荐生信技能树-微生物组版块(http://www.biotrainee.com/forum-88-1.html) 发贴,并转发链接入群,问题及解答方便检索,造福后人。
image

学习16S扩增子、宏基因组思路和分析实战,快关注“宏基因组”,干货第一时间推送。
image

系统学习生物信息,快关注“生信宝典”
image

点击阅读原文,跳转最新文章目录阅读 https://mp.weixin.qq.com/s/5jQspEvH5_4Xmart22gjMA

Transformer是一种基于注意力机制(Attention Mechanism)的深度学习模型架构,最初由Vaswani等人在论文《Attention is All You Need》中提出。它彻底改变了自然语言处理领域的传统做法,并成为许多先进模型的基础框架。 ### Transformer的核心思想 传统的序列建模方法如RNN、LSTM存在训练速度慢、难以并行化的问题。而Transformer通过自注意力机制(Self-Attention),能够在一次前向传播过程中捕捉到输入序列的所有位置之间的依赖关系,从而解决了这些问题。 #### 主要成部分包括: 1. **编码器(Encoder)** 编码器负责将输入序列转换成高维表示向量。每个编码层包含两个子模块:一个多头注意力机制(Multi-head Attention)和一个全连接网络(Feed Forward Network)。这两个子模块之间采用残差连接和归一化操作。 2. **解码器(Decoder)** 解码器接收来自编码器的信息以及自身的先前输出预测结果,逐步生成目标序列。其结构类似于编码器,但也加入了“掩码多头注意力”以防止当前位置看到未来的标记信息。 3. **自注意力机制(Self-Attention / Multi-head Attention)** 自注意力允许模型关注句子中的不同部分,在计算某个词的上下文时表示时赋予其他单词不同程度的重要性权重值。这种机制使得长距离依赖更容易被捕获。 4. **Positional Encoding (位置嵌入)** 因为Transformer抛弃了递归形式的设计,默认无法感知输入数据的位置顺序关系,所以引入了固定模式的位置编码来增加时间维度上的特征表达能力。 --- ### 为什么Transformers很重要? - 它们极大地提高了机器翻译等任务的质量; - 提供了一个高效的学习框架可以扩展至非常大的规模; - 成为了预训练通用语言表征的重要工具,例如BERT、GPT系列皆以此为基础构建而成;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值