【深度学习】注意力机制的改进:稀疏注意力、局部注意力、低秩/线性注意力

稀疏注意力

稀疏注意力(Sparse Attention)是一种通过选择性地处理部分token来减少整体计算负荷的方法。这在自然语言处理和计算机视觉中的注意力机制中尤为重要,因为它可以显著降低计算复杂度和内存使用。

在标准的全连接注意力机制中,每个token(词或图像patch)都与其他所有token计算注意力权重,这会导致计算复杂度为 O ( N 2 ) O(N^2) O

### 改进 MobileViT 局部注意力机制的方法 MobileViT 是一种轻量级模型家族,旨在通过减少参数数量来提高计算效率的同时保持较高的准确性[^1]。为了进一步优化其局部注意力机制,可以从以下几个方面入手: #### 1. **引入动态卷积** 动态卷积可以根据输入特征图自适应调整权重分布,从而增强对不同区域的关注度。这种方法可以显著提升局部注意力的效果,尤其是在处理复杂背景的任务时。例如,在 YOLOv8 中也采用了类似的策略来改进检测头的表现[^3]。 ```python import torch.nn as nn class DynamicConv(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=3): super(DynamicConv, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels * kernel_size * kernel_size, 1) def forward(self, x): weight = self.conv(x) b, c, h, w = weight.shape weight = weight.view(b, -1, h, w).permute(0, 2, 3, 1).contiguous() return weight ``` #### 2. **采用窗口化多头注意力 (Windowed Multi-head Attention)** 窗口化的多头注意力能够降全局注意力带来的高昂计算成本,同时保留足够的上下文信息。这种技术已经在 Transformer 架构中得到了广泛应用,并被证明可以在图像分类、目标检测等多个任务上取得良好效果[^2]。 #### 3. **融合空间金字塔池化模块(SPP)** SPP 可以捕获多个尺度上的特征表示,这对于改善局部细节捕捉能力非常有帮助。将其融入到现有的注意力机制框架下,有助于更好地理解对象内部结构及其周围环境的关系。 ```python from torchvision import models def add_spp_layer(base_model): spp = SpatialPyramidPooling([1, 2, 4]) base_model.add_module('spp', spp) # Example usage with ResNet backbone resnet = models.resnet18(pretrained=True) add_spp_layer(resnet) ``` 以上提到的技术手段均能在不同程度上促进 MobileViT 对于局部特性的把握程度,进而推动整体性能向前迈进一大步。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值