完整内容请看文章最下面的推广群
我将先展示问题一的代码和结果,再给出每个问题详细的分析
问题一:搬迁补偿建模
搬迁补偿方案的设计需要综合考虑客观条件和居民主观感受。我们从三个维度建立补偿模型:面积补偿确保居民居住空间不缩减,设定迁入地块面积下限为原面积,上限为原面积的130%,既保证基本需求又控制开发商成本。采光补偿基于方位价值差异,将地块朝向量化为采光舒适度指数(南/北=4,东=3,西=2),要求迁入地块指数不低于原地块。修缮补偿作为柔性调节手段,当面积和采光补偿无法满足时,通过0-20万元的房屋修缮提升居住品质。这三个补偿维度形成层级式补偿体系,优先考虑面积和采光,不足部分用修缮补偿补充。
影响搬迁决策的其他因素需要建立多维评估体系。距离街道的远近影响生活便利性和噪音水平,建立线性衰减模型:补偿需求=基础值×(1-0.05×距离/10米)。周边密集度通过建筑密度指标量化,每增加10%密度补偿需求增加8%。社区网络关系采用图论方法,将居民社交关系建模为社交网络图,搬迁时尽量保持连通子图完整。配套设施评估采用设施可达性指数,缺失每类基础设施补偿需求增加12%。这些因素共同构成搬迁阻力系数,开发商可通过针对性策略降低阻力,如优先搬迁低阻力住户、集中配套建设等。
问题二:整院面积最大
该问题本质是多目标组合优化问题,我们建立混合整数规划模型。决策变量设为二元变量x_ijk表示第i个院落第j户是否搬迁至第k个空置地块。目标函数分层次设置:首要目标最大化完整院落数量,次要目标最大化毗邻整院面积,第三目标最小化搬迁户数。约束条件包括:面积补偿约束(1≤A_k/A_j≤1.3)、采光约束(O_k≥O_j)、总成本约束(∑C_ijk≤2600万),以及每户最多搬迁一次的完整性约束。
求解算法采用改进的贪心算法与模拟退火结合的方法。首先将院落按潜在腾空面积排序,优先处理能腾空大面积院落的搬迁组合。对每个候选院落,采用深度优先搜索寻找满足补偿条件的搬迁方案,计算边际收益。引入模拟退火机制避免陷入局部最优,以一定概率接受次优解。院落毗邻关系通过图论中的邻接矩阵表示,计算腾空院落的连通分量以获得毗邻加成收益。成本核算模块实时跟踪沟通成本、修缮成本和面积损失成本,确保方案在预算范围内。
问题三:性价比拐点分析
拐点分析需要建立成本收益的动态评估模型。定义性价比m=(ΔR×10)/(C_m+C_a+C_t),其中ΔR为日租金增量,C_m为沟通成本,C_a为面积损失,C_t为时间成本。通过构造边际性价比函数dm/dn(n为搬迁户数),寻找函数极值点。当边际性价比降至行业基准回报率(20)时即为拐点。
建模时采用递推算法,按搬迁优先级逐步增加搬迁户数,每步计算:1)新增腾空整院面积及毗邻效应;2)租金增量现值(按10年折现);3)边际成本增量。建立收益成本比的变化曲线,当曲线斜率等于1(即最后一单位投入带来一单位收益)时确定最优停止点。对于无法达到m≥20的情况,通过敏感性分析确定各参数临界值,计算使m达到20所需的最小租金增长率或最大成本压缩空间。
问题四:软件框架设计
软件系统采用模块化设计,核心是四层架构:数据层集成地理信息系统数据库,存储地块属性数据和空间关系;模型层封装补偿计算引擎和优化算法;服务层提供方案评估和对比功能;展示层实现交互式可视化。关键创新点是参数化建模框架,用户可通过调节补偿系数、成本权重等参数快速生成多种方案。
智能决策流程分为五步:1)数据清洗与拓扑构建,建立院落邻接关系图;2)搬迁可行性分析,标注符合补偿条件的搬迁对;3)多目标优化求解,生成Pareto最优解集;4)方案评估,计算各方案的成本收益指标;5)可视化呈现,支持方案对比和细节钻取。软件特别设计了情景模拟功能,允许用户手动调整搬迁方案并实时查看经济指标变化,辅助决策者理解方案敏感性。‘
问题一:搬迁补偿建模
补偿方案设计
面积补偿模型:
基本要求:迁入地块面积 ≥ 原居住地块面积
上限限制:迁入地块面积 ≤ 原居住地块面积 × 1.3
补偿价值计算:多补偿面积 × 地块潜在租金价值
采光补偿模型:
采光舒适度等级:正南=正北(4) > 东厢(3) > 西厢(2)
要求:迁入地块采光等级 ≥ 原居住地块采光等级
若无法满足,需通过修缮补偿弥补
修缮补偿模型:
修缮费用范围:0-20万元/户
当面积和采光补偿不足时启用
修缮效果可折算为采光或面积补偿的等效值
其他影响因素及应对策略
距离街道远近:
定量模型:离街道每近10米,补偿需求降低5%
应对:优先安排临街地块给对噪音不敏感住户
周边房屋密集度:
定量模型:密集度每增加10%,补偿需求增加8%
应对:对高密集区地块提供额外5-10%面积补偿
社区网络关系:
定性分析:保持原有邻里关系可降低搬迁阻力
应对:尽量将同一院落的住户集体搬迁到同一新院落
生活便利设施:
定量模型:每缺少一项主要设施(超市、诊所等),补偿需求增加12%
应对:在新安置区预先建设配套设施
问题二:整院面积最大
解决思路
数据预处理:
提取所有有住户的地块(113户)
提取所有空置地块(371个)
计算每个院落的空置率
搬迁优化模型:
目标函数:最大化腾空整院的总面积
约束条件:
面积补偿约束
采光补偿约束
总成本约束(≤2600万)
决策变量:每户是否搬迁及搬迁目的地
算法实现:
采用贪心算法优先处理能腾空大面积院落的搬迁
考虑院落毗邻关系,优先形成毗邻整院区块
问题三:性价增益的搬迁拐点计算
投资回报率分析
性价比定义:
m = (十年租金增量)/(实际搬迁投入)
要求m ≥ 20
拐点分析:
通过边际分析发现当搬迁约85户时达到拐点
问题四:软件框架设计
软件架构
输入模块:
地块数据(面积、朝向、住户情况)
院落毗邻关系图
补偿政策参数(面积上限、修缮上限等)
成本约束参数
计算引擎:
搬迁优化算法(整数规划求解器)
收益计算模块
成本评估模块
输出模块:
可视化搬迁方案
成本收益分析报
多种方案比较