常用分类算法的优缺点

1. Bayes 贝叶斯分类法

1.1. 优点

1 )所需估计的参数少,对于缺失数据不敏感。
2 )有着坚实的数学基础,以及稳 定的分类效率。

1.2. 缺点

1 )需要假设属性之间相互独立,这往往并不成立。(喜欢吃番茄、鸡蛋,却不 喜欢吃番茄炒蛋)。
2 )需要知道先验概率。
3 )分类决策存在错误率。

2. Decision Tree决策树

2.1. 优点

1 )不需要任何领域知识或参数假设。
2 )适合高维数据。
3 )简单易于理解。
4 )短时间内处理大量数据,得到 可行且效果较好的结果。
5 )能够同时处理数据型和常规性 属性。

2.2. 缺点

1 )对于各类别样本数量不一致数据,信 息增益偏向于那些具有更多数值的特 征。
2 )易于过拟合。
3 )忽略属性之间的相关性。
4 )不支持在线学习。

3. SVM支持向量机

3.1. 优点

1 )可以解决小样本下机器学习的问题。
2 )提高泛化性能。
3 )可以解决高维、非线性问题。 超高维文本分类仍受欢迎。
4 )避免神经网络结构选择和局部 极小的问题。

3.2. 缺点

1 )对缺失数据敏感。
2 )内存消耗大,难以解释。
3 )运行和调参略烦人。

4. KNN K近邻

4.1. 优点

1 )思想简单,理论成熟,既可以用来做分类也可以用来做回归;
2 )可用于非线性分类;
3 )训练时间复杂度为 O(n)
4 )准确度高,对数据没有假设, outlier 不敏感;

4.2. 缺点

1 )计算量太大。
2 )对于样本分类不均衡的问题,会产生误判。
3 )需要大量的内存。
4 )输出的可解释性不强。

5. Logistic Regression逻辑回归

5.1. 优点

1 )速度快。
2 )简单易于理解,直接看到各个特征的权重。
3 )能容易地更新模型吸收新的数 据。
4 )如果想要一个概率框架,动态调整分类阀值。

5.2. 缺点

特征处理复杂。需要归一化和较多的特 征工程。

6. Neural Network 经网络

6.1. 优点

1 )分类准确率高。
2 )并行处理能力强。
3 )分布式存储和学习能力强。
4 )鲁棒性较强,不易受噪声影响。

6.2. 缺点

1 )需要大量参数(网络拓扑、阀值、阈值)。
2 )结果难以解释。
3 )训练时间过长。
 

7. Adaboosting

7.1. 优点

1 adaboost 是一种有很高精度的分类器。
2 )可以使用各种方法构建子分类 器, Adaboost 算法提供的是框 架。
3 )当使用简单分类器时,计算出 的结果是可以理解的。而且弱分类 器构造极其简单。
4 )简单,不用做特征筛选。
5 )不用担心 overfifitting

7.2. 缺点

outlier 比较敏感

参考文献

深度学习500问
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值