1. Bayes 贝叶斯分类法
1.1. 优点
1
)所需估计的参数少,对于缺失数据不敏感。
2
)有着坚实的数学基础,以及稳
定的分类效率。
1.2. 缺点
1
)需要假设属性之间相互独立,这往往并不成立。(喜欢吃番茄、鸡蛋,却不
喜欢吃番茄炒蛋)。
2
)需要知道先验概率。
3
)分类决策存在错误率。
2. Decision Tree决策树
2.1. 优点
1
)不需要任何领域知识或参数假设。
2
)适合高维数据。
3
)简单易于理解。
4
)短时间内处理大量数据,得到
可行且效果较好的结果。
5
)能够同时处理数据型和常规性
属性。
2.2. 缺点
1
)对于各类别样本数量不一致数据,信
息增益偏向于那些具有更多数值的特
征。
2
)易于过拟合。
3
)忽略属性之间的相关性。
4
)不支持在线学习。
3. SVM支持向量机
3.1. 优点
1
)可以解决小样本下机器学习的问题。
2
)提高泛化性能。
3
)可以解决高维、非线性问题。
超高维文本分类仍受欢迎。
4
)避免神经网络结构选择和局部
极小的问题。
3.2. 缺点
1
)对缺失数据敏感。
2
)内存消耗大,难以解释。
3
)运行和调参略烦人。
4. KNN K近邻
4.1. 优点
1
)思想简单,理论成熟,既可以用来做分类也可以用来做回归;
2
)可用于非线性分类;
3
)训练时间复杂度为
O(n)
;
4
)准确度高,对数据没有假设,
对
outlier
不敏感;
4.2. 缺点
1
)计算量太大。
2
)对于样本分类不均衡的问题,会产生误判。
3
)需要大量的内存。
4
)输出的可解释性不强。
5. Logistic Regression逻辑回归
5.1. 优点
1
)速度快。
2
)简单易于理解,直接看到各个特征的权重。
3
)能容易地更新模型吸收新的数
据。
4
)如果想要一个概率框架,动态调整分类阀值。
5.2. 缺点
特征处理复杂。需要归一化和较多的特
征工程。
6. Neural Network 神经网络
6.1. 优点
1
)分类准确率高。
2
)并行处理能力强。
3
)分布式存储和学习能力强。
4
)鲁棒性较强,不易受噪声影响。
6.2. 缺点
1
)需要大量参数(网络拓扑、阀值、阈值)。
2
)结果难以解释。
3
)训练时间过长。
7. Adaboosting
7.1. 优点
1
)
adaboost
是一种有很高精度的分类器。
2
)可以使用各种方法构建子分类
器,
Adaboost
算法提供的是框
架。
3
)当使用简单分类器时,计算出
的结果是可以理解的。而且弱分类
器构造极其简单。
4
)简单,不用做特征筛选。
5
)不用担心
overfifitting
。
7.2. 缺点
对
outlier
比较敏感
参考文献
深度学习500问