常用分类算法的优缺点

1. Bayes 贝叶斯分类法

1.1. 优点

1 )所需估计的参数少,对于缺失数据不敏感。
2 )有着坚实的数学基础,以及稳 定的分类效率。

1.2. 缺点

1 )需要假设属性之间相互独立,这往往并不成立。(喜欢吃番茄、鸡蛋,却不 喜欢吃番茄炒蛋)。
2 )需要知道先验概率。
3 )分类决策存在错误率。

2. Decision Tree决策树

2.1. 优点

1 )不需要任何领域知识或参数假设。
2 )适合高维数据。
3 )简单易于理解。
4 )短时间内处理大量数据,得到 可行且效果较好的结果。
5 )能够同时处理数据型和常规性 属性。

2.2. 缺点

1 )对于各类别样本数量不一致数据,信 息增益偏向于那些具有更多数值的特 征。
2 )易于过拟合。
3 )忽略属性之间的相关性。
4 )不支持在线学习。

3. SVM支持向量机

3.1. 优点

1 )可以解决小样本下机器学习的问题。
2 )提高泛化性能。
3 )可以解决高维、非线性问题。 超高维文本分类仍受欢迎。
4 )避免神经网络结构选择和局部 极小的问题。

3.2. 缺点

1 )对缺失数据敏感。
2 )内存消耗大,难以解释。
3 )运行和调参略烦人。

4. KNN K近邻

4.1. 优点

1 )思想简单,理论成熟,既可以用来做分类也可以用来做回归;
2 )可用于非线性分类;
3 )训练时间复杂度为 O(n)
4 )准确度高,对数据没有假设, outlier 不敏感;

4.2. 缺点

1 )计算量太大。
2 )对于样本分类不均衡的问题,会产生误判。
3 )需要大量的内存。
4 )输出的可解释性不强。

5. Logistic Regression逻辑回归

5.1. 优点

1 )速度快。
2 )简单易于理解,直接看到各个特征的权重。
3 )能容易地更新模型吸收新的数 据。
4 )如果想要一个概率框架,动态调整分类阀值。

5.2. 缺点

特征处理复杂。需要归一化和较多的特 征工程。

6. Neural Network 经网络

6.1. 优点

1 )分类准确率高。
2 )并行处理能力强。
3 )分布式存储和学习能力强。
4 )鲁棒性较强,不易受噪声影响。

6.2. 缺点

1 )需要大量参数(网络拓扑、阀值、阈值)。
2 )结果难以解释。
3 )训练时间过长。

7. Adaboosting

7.1. 优点

1 adaboost 是一种有很高精度的分类器。
2 )可以使用各种方法构建子分类 器, Adaboost 算法提供的是框 架。
3 )当使用简单分类器时,计算出 的结果是可以理解的。而且弱分类 器构造极其简单。
4 )简单,不用做特征筛选。
5 )不用担心 overfifitting

7.2. 缺点

outlier 比较敏感

参考文献

深度学习500问
### 图像识别算法优缺点分析 #### 分类算法 分类算法的主要目标是从已知类别中预测新样本所属的类别。其优点包括高效性和准确性,尤其是在训练数据充足的情况下表现优异[^1]。然而,这类算法也存在一些局限性。例如,在面对复杂场景或多类别问题时,可能会出现过拟合现象[^3]。此外,某些实现方式(如决策树中的ID3算法)可能倾向于选择具有更多数值的特征,从而影响模型公平性。 ```python from sklearn.tree import DecisionTreeClassifier clf = DecisionTreeClassifier() clf.fit(X_train, y_train) y_pred = clf.predict(X_test) ``` 对于上述提到的问题,可以通过引入正则化技术或者采用更先进的随机森林(Random Forests)等集成方法加以缓解。 #### 检测算法 检测算法不仅需要判断物体是否存在,还需要定位该物体的具体位置。这种类型的算法通常适用于自动驾驶汽车的目标跟踪以及安防监控等领域。它的优势在于能够提供精确的空间坐标信息;但是当背景干扰较大或是光照条件变化剧烈的时候,性能会有所下降[^2]。 #### 分割算法 分割算法致力于把输入图片划分成若干区域,使得每一个区域内像素都属于同一个语义单元。它非常适合医学影像诊断等方面的应用。不过由于自然界的多样性,要达到理想的分割效果往往面临巨大挑战——比如边界模糊不清的对象难以界定等问题。 #### 关联算法 关联算法旨在发现不同对象之间的联系模式。这种方法特别适合于推荐系统构建等工作流当中。尽管如此,如果数据库里面存在着大量噪声或者是不完整的记录,则会对最终的结果质量造成严重影响。 #### 混合算法 最后一种就是综合运用以上各类技巧形成的混合型方案。理论上讲,这种方式应该能兼顾各方长处而规避短板,但实际上如何合理配置各子模块权重成为一个新的难题。 ### 总结 每种图像识别算法都有各自适用范围及其固有缺陷。因此,在具体项目开发过程中应当依据实际情况权衡利弊做出明智抉择。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值