误差的基本知识

本文主要探讨了误差的基本知识,深入剖析了误差的来源、类型、计算与处理方法。首先,我们介绍了误差的定义和其在科学研究、数据分析以及工程实践中的重要性。随后,我们详细分析了随机误差、系统误差和粗大误差三种主要类型,并阐述了它们的特点和产生原因。此外,我们还介绍了误差的计算方法,包括平均误差、均方误差、标准误差等,并讨论了如何根据实际需求选择合适的误差指标。最后,我们提供了一些有效的误差处理方法,如数据筛选、误差修正和模型优化等,帮助读者在实际应用中减少误差、提高数据质量和决策准确性。 

1. 误差来源

用计算机进行实际问题数值计算,计算误差是不可避免的。误差的来源主要有四个方面:

1.1. 模型误差

用数学模型描述实际问题,一般都要作一定的简化,由此产生的数学模型的解与实际问题的解之间会有差异,这种差异称为模型误差。

1.2. 观测误差

数学模型中包含的某些参数或常数,往往是通过仪器观测或实验获得其数值的,这样得到的观测数值与实际数值之间会有误差,这种误差称为观测误差。

1.3. 截断误差

求解数学模型所用的数值计算方法往往是近似方法,从而只能得到数学模型的近似解,由此产生的误差称为方法误差。由于近似方法一般都要用有限的四则算术运算步骤来代替无穷的极限运算,这种由截断一个无穷过程而引起的误差,就是截断误差。因而方法误差也称为截断误差。

1.4. 舍入误差

由于电子数字计算机只能将数表示成有限位进行运算,所以对超过位数的数字要按一定的规则舍入,由此产生的误差称为舍入误差。

数值计算方法主要研究截断误差和舍入误差对计算结果的影响,一般不考虑模型误差和观测误差。

2. 绝对误差与相对误差

数值计算中处理的数据和计算的结果,通常都是近似值,它们与准确值之间存在着误差。

x^*是准确值x的一个近似值,则称e=x^*-x为近似值x^*的绝对误差。

把近似值x^*的绝对误差与准确值x之比称为近似值x^* 的相对误差,记为

e_r=\frac{e}{x}=\frac{x^*-x}{x}

实际上,由于准确值x是未知的,所以通常把相对误差改取为

e_r=\frac{e}{x}=\frac{x^*-x}{x^*}

3. 数值计算的误差估计及算法稳定性

数值计算中误差传播情况比较复杂,要对每一步计算的误差进行精确估计难以做到,因而通常采用微分误差分析方法估计误差,即误差较小时忽略二阶及二阶以上的误差高阶小量。

数值计算中误差传播情况比较复杂,要对每一步计算的误差进行精确估计难以做到,因而通常采用微分误差分析方法估计误差,即误差较小时忽略二阶及二阶以上的误差高阶小量。设原始数据x_1, x_2, \hdots, x_n是相互独立的变量值,把通过算式所得到的结果y看成是x_1, x_2, \hdots, x_n的函数值,即

y = f\left ( x_1, x_2, \hdots, x_n \right )

x_1^*, x_2^*, \hdots, x_n^*依次是x_1, x_2, \hdots, x_n的近似值,那么在假设按算式计算本身没有误差的情况下,结果y的近似值y^*

y^* = f\left ( x_1^*, x_2^*, \hdots, x_n^* \right )

\left | e_i \right | = \left | x_i^* - x_i \right | (i = 1, \hdots, n)都很小时,有

\begin{aligned} e_y = y^* - y &= f(x_1^*, \cdots, x_n^*) - f(x_1, \cdots, x_n) \\ &=f\left(x_{1}^{*},\cdots,x_{n}^{*}\right)-[f\left(x_{1}^{*},\cdots,x_{n}^{*}\right)+\sum_{i=1}^{n}\frac{\partial f\left(x_{1}^{*},\cdots,x_{n}^{*}\right)}{\partial x_{i}}\left(x_{i}-x_{i}^{*}\right) \\ &+ \text{Errors of second order and above are small quantities of high order}] \\ &\approx\sum_{i=1}^{n}\frac{\partial f(x_{1}^{*},\cdots,x_{n}^{*})}{\partial x_{i}}(x_{i}^{*}-x_{i}) \end{aligned}

由(1.2-1)式得到近似值y^*的绝对误差限

\varepsilon_{y}\leqslant\sum_{i=1}^{n}\left|\frac{\partial f(x_{1}^{*},\cdots,x_{n}^{*})}{\partial x_{i}}\right|\varepsilon_{x_{i}}

和相对误差限

\left(\varepsilon_{y}\right)_{r}=\frac{\varepsilon_{y}}{\left|y^{*}\right|}\leqslant\sum_{i=1}^{n}\left|\frac{1}{y^{*}}\left(\frac{\partial f}{\partial x_{i}}\right)_{*}\right|\varepsilon_{x_{i}}=\sum_{i=1}^{n}\left|\frac{x_{i}^{*}}{y^{*}}\cdot\left(\frac{\partial f}{\partial x_{i}}\right)_{*}\right|\left(\varepsilon_{x_{i}}\right)_{r}

其中

\left(\frac{\partial f}{\partial x_{i}}\right)_{*}=\frac{\partial f(x_{1}^{*},\cdots,x_{n}^{*})}{\partial x_{i}}

值得指出的是,不等式(1.2-2)和(1.2-3)中的等号是可能取到的,因为\left(\frac{\partial f}{\partial x_{i}}\right)_{*}x_i^* - x_i可能同为正值或负值。

从(1.2-2)式和(1.2-3)式看出,

\left|\left(\frac{\partial f}{\partial x_{i}}\right)_{*}\right|,\left|\frac{x_{i}^{*}}{y^{*}}\left(\frac{\partial f}{\partial x_{i}}\right)_{*}\right|\quad(i=1,2,\cdots,n) 

分别给出了x_i^*的绝对误差对y^*的绝对误差和x_i^*的相对误差对y^*的相对误差的影响程度,它们的大小对误差传播起着重要的作用。

我们称 

\left|\frac{x_{i}^{*}}{y^{*}}\left(\frac{\partial f}{\partial x_{i}}\right)_{*}\right|\quad(i=1,2,\cdotp\cdotp\cdotp,n)

为该问题(即计算y = f\left ( x_1, x_2, \hdots, x_n \right ))的条件数。

当条件数 \left|\frac{x_{i}^{*}}{y^{*}}\left(\frac{\partial f}{\partial x_{i}}\right)_{*}\right| 很大时,即使x_i^*的相对误差\left | \left ( e_{x_i} \right )_r \right |很小,也可能使y^*的相对误差很大,这时计算y = f\left ( x_1, x_2, \hdots, x_n \right )的问题称为病态的,而当这n个条件数都不大时,原始数据的相对误差对y^*的相对误差影响不大,故称该问题是良态的。

所谓的数值稳定的算法是指,在数字计算机执行这个数值算法的过程中,产生的舍入误差能够被控制在一定范围内,并对最终的结果影响不大。如果计算过程中舍入误差不断增大,使最终结果与准确值相差较大,这样的算法就是数值不稳定的算法。

4. 数值计算中应注意的一些原则

用数值稳定性好的计算方法,以便控制舍入误差的传播;

两个数量级相差很大的数进行加减运算时,要防止小的那个数加减不到大的数中所引起的严重后果;

避免两个相近的数相减,以免严重损失有效数字;

在除法运算中,避免除数的绝对值远小于被除数的绝对值;

防止出现机器零和溢出停机;

简化计算步骤,减少运算次数。

参考文献

高等工程数学

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值