sim2real学习笔记

     Sim2Real(Simulation to Reality,仿真到现实)是一种让在仿真环境中训练的模型或系统能够成功应用到现实世界的技术。它主要用于机器人、自动驾驶、具身智能等领域。因为现实世界的数据采集成本高、风险大、效率低,所以很多训练工作在仿真环境中进行。但仿真环境和现实之间存在“域差距(domain gap)”,比如传感器噪声、物理参数、光照条件等不同,这会导致模型迁移到现实时性能下降。

(1) Sim2Real的核心目标

让模型具备迁移能力,在真实环境中也能像在仿真中一样表现良好。针对不同任务适合不同的仿真平台,选择一个你能快速上手并能加载你任务模型的平台。以下是常用的几个:

任务推荐平台
机器人控制PyBullet, Isaac Gym, MuJoCo, Gazebo
视觉导航Habitat, Gibson, AI2-THOR
多模态感知Isaac Sim, Unity, Blender(自建场景)

(2) 常用的Sim2Real策略

  1. Domain Randomization(域随机化)
    在仿真中随机变化颜色、纹理、光照、物理参数等,强迫模型学习更加泛化的策略。
    例:训练时每次模拟不同的墙壁颜色或物体重量。

  2. Domain Adaptation(域适应)
    使用一些技术(如对抗学习)来减少仿真和现实之间的数据差异。

  3. System Identification(系统建模)
    精确建模现实中的物理参数,使仿真更接近现实。

  4. Fine-tuning(微调)
    在仿真中预训练,在现实中用少量真实数据进行微调。

  5. Sim2Real via Representation Learning
    学习一种对环境的抽象表示(如视觉embedding),使得仿真和现实的差别对决策影响较小。

示例应用:

  • 机器人在虚拟环境中学会抓取,然后在真实世界中成功抓取物品。

  • 自动驾驶系统在模拟城市中训练,然后迁移到真实街道上。

(3) 上手建议

🎯 推荐起手项目:

  • 机器人抓取任务:使用 PyBullet 搭配 Domain Randomization 训练策略。

  • 强化学习导航任务:使用 Habitat + PPO/DD-PPO。

  • 视觉感知迁移:仿真中使用 Blender 生成 RGB+Depth 图像,训练目标检测模型,然后迁移到真实图像。

🛠️ 必学工具链:

  • Python、PyTorch(训练)

  • ROS(机器人控制)

  • OpenCV(图像处理)

  • 仿真平台 SDK(如 Isaac Gym API、Habitat API)

🧠资源推荐:

类型链接或名称
教程Stanford CS327A, Isaac Sim Tutorials
论文“Closing the Sim2Real Gap” (OpenAI), “Domain Randomization for Transferring Deep Neural Networks from Simulation to the Real World”
开源项目robosuite, OpenAI Gym Environments

以下是一些Sim2Real挑战赛的学习资料: 1. Sim-to-Real Reinforcement Learning for Robotics: A Reality Gap is a challenge in robotics where models trained in simulation often fail to perform well in the real world. This paper examines the problem and proposes a sim-to-real approach to reinforcement learning for robotics. 2. Sim2Real Viewpoint Invariant Visual Servoing by Recurrent Control: This paper proposes a view-invariant visual servoing technique that can generalize well from simulated to real-world environments. 3. Sim-to-Real Transfer of Robotic Control with Dynamics Randomization: This paper introduces a method of training robots in simulation using randomized dynamics and then transferring the learned control policies to the real world. 4. Sim-to-Real Transfer for Deep Reinforcement Learning with Safe Exploration: This paper proposes a method for safe exploration in Sim2Real transfer for deep reinforcement learning. 5. Sim2Real View-Invariant Visual Servoing by Combining Simulation and Deep Learning: This paper proposes a view-invariant visual servoing technique that combines simulation and deep learning to achieve robustness to viewpoint changes. 6. Sim2Real Transfer for Robotic Manipulation: A Survey: This paper provides a comprehensive survey of the existing literature on Sim2Real transfer for robotic manipulation. 7. OpenAI Robotics: Sim2Real Transfer: This blog post by OpenAI provides an overview of Sim2Real transfer for robotics and highlights some of the challenges and opportunities in the field. 8. NVIDIA Research: Sim-to-Real Transfer Learning for Robotics: This video by NVIDIA Research provides an overview of Sim2Real transfer learning for robotics and showcases some of the recent advancements in the field. 9. Sim-to-Real Transfer of Robotic Control with Deep Reinforcement Learning: This paper proposes a method for Sim2Real transfer of robotic control using deep reinforcement learning and demonstrates its effectiveness on a real-world robotic arm. 10. Sim-to-Real Transfer of Control Policies for Robotics using Adversarial Domain Adaptation: This paper proposes a method for Sim2Real transfer of control policies for robotics using adversarial domain adaptation and demonstrates its effectiveness on a real-world robotic arm.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

xiaomu_347

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值