【PPPAR】PPP模糊度固定

本文详细介绍了GPS模糊度固定的过程,包括FCB模式、宽巷和窄巷模糊度的处理,以及整数钟和非组合bia产品的使用。重点强调了数据质量和控制的重要性,以及在不同阶段可能出现的问题和解决策略。此外,还提到了MG-APP软件在模糊度固定中的应用,并分享了使用不同数据源进行模糊度固定的效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

当前模糊度固定方法

  1. FCB模式:非差消电离层模糊度解出来,选择一个参考星组合成星间单差。然后分解宽巷改正宽巷偏差,hatch平滑固定。浮点单差减去宽巷偏差得到浮点窄巷(需要改正窄巷偏差),最后固定了星间单差模糊度,求出固定浮点消电离层模糊度,然后带回方程约束求解
    在这里插入图片描述
  2. 整数钟
    在这里插入图片描述
    (以上模糊度固定流程图来源于—马效申硕士论文《模糊度固定 PPP 与 INS组合定位研究》)

质量控制

在这里插入图片描述
(以上GPS数据预处理流程图来源于马效申硕士论文《模糊度固定 PPP 与 INS组合定位研究》)

模糊度固定需要注意点

下面讨论的模糊度,宽窄巷等都是星间单差模糊度。

  • grg、FCB等产品一定要用P1码或者C1+P1C1改正,不要用C1码,这样宽巷5分钟所有卫星就可以小于0.25周。
  • 至于窄巷是个难点:
    1、保证浮点解PPP模糊度精度(与解算产品时候模型接近或一致)。
    2、当PPP滤波稳定后窄巷浮点模糊度绝大多数接近整数说明固定流程计算正确
    3、FCB存储的宽巷(86cm)和窄巷(10.7cm)的周单位产品。FCB固定窄巷没区别只是窄巷固定后还原浮点模糊度方式不太一样,下面用示意代码展示还原过程,注意星间单差FCB( SDnl_FCB )。使用FCB产品这一条很重要!!!
double SDnl_FCB = (oneSat.nl_FCB - refSat.nl_FCB);// 单差窄巷FCB(单位:周)
double Nwl_fix = oneSat.SD_WL_int, N1_fix = oneSat.SD_NL_int + SDnl_FCB;// 注意固定的窄巷要加上单差窄巷FCB(单位:周)
double AmbLCFixed = ((M_C*F2/(F1*F1 - F2*F2))*Nwl_fix + (M_C/(F1+F2))*N1_fix)/lamdaIF;//还原固定的浮点模糊度(单位:周)

4、对于非组合bia产品需要改正到对应的观测值上面,如果用的C1C改正,此时不要在用P1C1的DCB再把C1C码改成C1W码。非组合bia产品也可以组合消电离层模式进行模糊度固定。
5、使用整数钟产品不需要IGS的钟差改正到伪距上,因为伪距影响较小。虽然整数钟与IGS伪距钟差异10-20m但伪距权影响很小,也可以不使用。
6、窄巷在坐标误差大于10cm很难固定,需要寻找新方法。
7、固定窄巷协方差矩阵是个关键因素,选择高度角最大的卫星作为参考星可以lamda进行LD分解计算ratio。但是使用轮换星策略经常会无法LD分解,导致无法进行lamda搜索。所以我选择了固定参考星策略(这是我个人遇到的问题,可能别人没有)。

模糊度固定产品下载

使用MG-APP固定模糊度目前结果如下

  • 星间单差(PPP求解每颗卫星浮点模糊度,选择参考星做差得出单差浮点模糊度)宽巷和窄巷分布图(接近整数分布=WL-round(WL)) 浮点解减去四舍五入数值。下面实验数据用的NNOR测站,grg开头的sp3和clk文件。结果如下图:
    在这里插入图片描述在这里插入图片描述在这里插入图片描述
    在这里插入图片描述

下面又对ALGO测站进行固定,坐标效果图如下:
在这里插入图片描述在这里插入图片描述下面又对JFNG测站进行固定,坐标效果图如下:

在这里插入图片描述在这里插入图片描述

简洁知识点

  • 消电离层组合模糊度分解成宽巷(WL)和窄巷(NL)。

    AmbIF = (0.3774825111*WL + 0.106953378*NL)/0.1902936728
    NL = (AmbIF*0.1902936728 - 0.3774825111*WL)/0.106953378

    其中0.1902936728是GPS的L1波长(注意:也是消电离层组合的波长), 0.106953378是窄巷波长。

  • 专业名词

    uncalibrated phase delay: UPD

  • 事后PPP-float & 事后PPP-AR

    24h静态PPP-float ENU-RMS: 2.85, 1.68, 5.68 mm,
    24h静态PPP-AR ENU-RMS: 1.43, 1.59, 5.31 mm.

    24h动态PPP-float ENU-RMS: 1.08, 0.92, 2.51 cm,
    24h动态PPP-AR ENU-RMS: 0.77, 0.83, 2.32 cm (mean fixing rate of 98.36%)

    数据来源:PRIDE PPP‑AR: an open‑source software for GPS PPP ambiguity resolution

说明

目前MG-APP软件可以使用grg、gbm_bia、FCB产品按照实时模式滤波做模糊度固定,CNT产品正在测试中。MG-APP具备了基本的PPPAR功能,但是再数据处理质量控制方面还有很多不足,观测数据质量不高就会引起固定失败,卫星变化也会引起mm级别的跳动,因此还需要进一步优化处理,有关问题可以评论。

如果你也关注MG-APP软件的功能的进展,请在Github给我们一个Star。
https://github.com/XiaoGongWei/MG_APP


在这里插入图片描述

如有关于本博客的不足之处或者建议请在下面评论留言。

附录:

FCB产品、CNES的事后处理bia产品、CNES的实时产品cnt,固定模糊度如下,分别是坐标误差,每颗卫星宽巷、窄巷小数周数:

在这里插入图片描述在这里插入图片描述在这里插入图片描述

图1. 上图是FCB-gbm产品固定模糊度,中图是CNES的事后处理bia产品固定模糊度,下图是CNES的实时产品cnt的bia(虚线是浮点PPP,加深的颜色是固定的PPP)

在这里插入图片描述在这里插入图片描述在这里插入图片描述图2. 上图是FCB-gbm产品宽巷,中图是CNES的事后处理bia宽巷,下图是CNES的实时产品cnt的bia宽巷

宽巷在第1000个历元左右发生了问题,也导致下面的窄巷也在第1000历元左右难以固定。因此看了一下1000历元的载波残差和伪距残差如下两个图
在这里插入图片描述在这里插入图片描述可能还是数据质量没有得到很好地控制,前期载波残差很小,因此宽巷和窄巷都能很好收敛固定,后面载波残差很大因此出现了问题。


在这里插入图片描述在这里插入图片描述在这里插入图片描述
图3. 上图是FCB-gbm产品窄巷,中图是CNES的事后处理bia窄巷,下图是CNES的实时产品cnt的bia窄巷

感觉宽、窄巷收到数据质量问题影响较大,还有很多内容需要继续优化。有问题可以在评论区讨论!!!

使用实时数据流固定模糊度

初步使用CNES的CLK93对IGS的BRST测站进行静态PPPAR,GPST:2020.10.07 3:50:00 - 2020.10.07 6:01:00

在这里插入图片描述上图可能数据问题导致1小时并未固定,逐渐误差收敛到5cm左右开始固定。

使用CLK93在BRST测站进行PPPAR。N和U方向固定后效果不明显,效果主要体现在E方向,下面是部分截图(虚线是实时PPP消电离层结果,圆圈是实时PPPAR结果):
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

自洽的大气产品(电离层+对流层)对PPP影响

在这里插入图片描述
图像来源:An Open-source PPP Client Implementation for the CNES PPP-WIZARD Demonstrator

专有名词

  • UPD存在于卫星端和接收机端,并且比较稳定能够被估计。模糊度固定解算的坐标精度,在东方向与IGS周解产品提高了30%。
    但是文章并未提及PPPAR能够加速收敛时间的问题(快速收敛)。我自己也认为PPPAR能够在东方向大幅度提升精度。如果收敛指标NEU同时小于0.1m将不能提高收敛时间,若收敛指标是3~5cm有可能提高收敛时间(论文经验:5cm才能参与PPPAR,只有进入5cm才能有效利用PPPAR)

以上结论来源于: Ge M , Gendt G , Rothacher M , et al. Resolution of GPS carrier-phase ambiguities in Precise Point Positioning (PPP) with daily observations[J]. Journal of Geodesy, 2008, 82(7):389-399.

rtklib是一种用于实现实时精确定位的开源软件。在实时精确定位过程中,固定模糊度是一个非常重要的步骤,它帮助减小GPS接收机测量误差,提高定位的准确性。 rtklib中的实时固定模糊度算法主要包含以下几个步骤: 1. 模糊度初始化:在初始阶段,模糊度会被初始化为宽松的值,因为此时还没有足够的数据来计算准确的模糊度。 2. 模糊度首次固定:当有足够的数据可用时,rtklib会进行模糊度的首次固定。这个步骤利用载波相位数据和伪距数据进行计算,通过解算两个接收机之间的距离,来确定模糊度的候选值。 3. 模糊度跟踪:在固定模糊度之后,rtklib会通过持续地跟踪载波相位和伪距数据来确定最准确的模糊度值。这个过程包括误差补偿、模糊度模糊解算及模糊度跟踪。 4. 模糊度验证:为了确保固定的模糊度是有效的,rtklib会进行模糊度的验证。通过对比解算得到的载波相位和伪距之间的差异,来判断模糊度是否有效。 5. 模糊度更新:如果模糊度验证通过,rtklib会根据最新的载波相位和伪距数据来更新模糊度值。这个过程是不断进行的,以确保模糊度能够及时准确地固定。 综上所述,rtklib实时ppp模糊度固定算法通过对载波相位和伪距数据进行解算和跟踪,来确定最准确的模糊度值,从而提高实时精确定位的准确性。这个算法是实时定位过程中的关键步骤之一,对于定位精度的提升起到了重要的作用。
评论 45
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

肖恭伟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值