最小二乘求解点云平面方程及其对应法向量

csdn对latex语法支持不完整啊,太不友好了,那我只好上图片了。我把文档已经上传到csdn了,免积分,链接
本文采用线性最小二乘直接解法(即对矩阵求逆),当矩阵维度大时,可能耗时比较多,可以采用矩阵分解方法缓解(文中已实现)。也可以把最后一步的求逆求解过程,换成迭代过程,即可变为线性最小二乘的迭代解法(未实现)。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
4show the codes

// 10最小二乘拟合平面.cpp : 此文件包含 "main" 函数。程序执行将在此处开始并结束。
//
/********************
作者:xx
时间:2021.06.15
程序功能:c++实现点云最小二乘平面拟合
依赖项:pcl1.9
函数功能:fitPlane()为了验证最小二乘原理的正确性,设平面方程为x+2y+3z+4=0,假设有五个点分别为(-1,0,-1),(-2,-1,0),(0,1,-2),
(-4,3,-2),(3,-2,1),根据五个点求解Ax+By+Cz+D=0
cloudPlane()输入点云实现平面参数与法线输出
注意事项:最小二乘对噪声敏感,请保证数据干净
*********************/

#include <iostream>
#include<string>
#include<stdexcept>

#include <Eigen/Dense>

#include<pcl/io/pcd_io.h>
#include<pcl/point_cloud.h>
#include<pcl/point_types.h>
#include <pcl/console/parse.h>
#include <pcl/filters/filter.h>
#include <pcl/filters/voxel_grid.h>
typedef pcl::PointXYZ pointT;
typedef pcl::PointCloud<pointT> cloud;
void fitPlane(const std::string & decomposition ="lu")
{
    //系数矩阵
    Eigen::Matrix<double, 5, 3> b_mat;
    b_mat(0, 0) = -1;
    b_mat(0, 1) = 0;
    b_mat(0, 2) = 1;

    b_mat(1, 0) = -2;
    b_mat(1, 1) = -1;
    b_mat(1, 2) = 1;

    b_mat(2, 0) = 0;
    b_mat(2, 1) = 1;
    b_mat(2, 2) = 1;

    b_mat(3, 0) = -4;
    b_mat(3, 1) = 3;
    b_mat(3, 2) = 1;

    b_mat(4, 0) = 3;
    b_mat(4, 1) = -2;
    b_mat(4, 2) = 1;
    std::cout <<"系数矩阵:\n"<< b_mat << std::endl;

    //列向量
    Eigen::Matrix<double, 5, 1> l_mat;
    l_mat(0, 0) = -1;
    l_mat(1, 0) = 0;
    l_mat(2, 0) = -2;
    l_mat(3, 0) = -2;
    l_mat(4, 0) = -1;
    std::cout << "列向量:\n" << l_mat << std::endl;
    Eigen::Matrix<double, 3, 1> a_mat;
    if (decomposition =="lu")
    {
        //lu分解求逆,对于大型矩阵加速。
        a_mat = ((b_mat.transpose() * b_mat)).lu().solve(b_mat.transpose() * l_mat);
    }
    else if (decomposition == "svd")
    {
        //SVD结果稳定特别是对于矩阵接近病态,但速度慢。
        a_mat = ((b_mat.transpose() * b_mat)).bdcSvd(Eigen::ComputeThinU | Eigen::ComputeThinV).solve(b_mat.transpose() * l_mat);
    }
    else
    {
        //直接解法
        a_mat = (b_mat.transpose() * b_mat).inverse() * b_mat.transpose() * l_mat;
    }

    std::cout << decomposition << "平面方程系数:a0,a1,a2:\n"<<a_mat << std::endl;
}
bool cloudPlane(const cloud::Ptr &cloud_origin, Eigen::Matrix<double, 3, 1> &aa_mat, const std::string& decomposition = "lu", const bool& downsample = false)
{

    //点云拟合平面
    cloud::Ptr cloud_in(new cloud);


    //************实例验证***********
    //cloud_in->points.push_back(pointT(-1, 0, -1));
    //cloud_in->points.push_back(pointT(-2, -1, 0));
    //cloud_in->points.push_back(pointT(0, 1, -2));
    //cloud_in->points.push_back(pointT(-4, 3, -2));
    //cloud_in->points.push_back(pointT(3, -2, -1));
    //cloud_in->height = 1;
    //cloud_in->width = 5;
    //cloud_in->resize(5);
    //************实例验证***********

    //去除nan点
    std::vector<int> indices;
    pcl::removeNaNFromPointCloud(*cloud_origin, *cloud_in, indices);

    //下采样,加快拟合速度,一般不需要这么多点,可选
    
    if (downsample)
    {
        pcl::VoxelGrid<pointT> sor;
        sor.setInputCloud(cloud_in);
        sor.setLeafSize(0.01f, 0.01f, 0.01f);
        sor.filter(*cloud_in);
    }
   
    //最小二乘平面拟合
    std::size_t cloud_size = cloud_in->points.size();
    std::cout << "方程个数:"<<cloud_size << std::endl;
    try 
    {
        if (cloud_size < 3)//小于三个点无法计算
        {
            throw std::runtime_error("方程个数少于未知量个数,请检查数据");
            
        }
    }
    catch (std::runtime_error err)
    {
        std::cerr << err.what() << std::endl;
        return false;
    }
    Eigen::MatrixXd B;
    B.resize(cloud_size, 3);
    Eigen::MatrixXd L;
    L.resize(cloud_size, 1);

    for (size_t row = 0; row < cloud_size; ++row)
    {
        B(row, 0) = cloud_in->points[row].x;
        B(row, 1) = cloud_in->points[row].y;
        B(row, 2) = 1;
        L(row, 0) = cloud_in->points[row].z;
    }

    if (decomposition == "lu")
    {

        aa_mat = ((B.transpose() *B)).lu().solve ( B.transpose() * L);
    }
    else if (decomposition == "svd")
    {
        aa_mat = ((B.transpose() * B)).bdcSvd(Eigen::ComputeThinU | Eigen::ComputeThinV).solve(B.transpose() * L);
    }
    else
    {
        aa_mat = (B.transpose() * B).inverse() * B.transpose() * L;
    }

    std::cout <<decomposition<< "点云平面拟合结果\n" << aa_mat << std::endl;
    return true;
}

int main()
{
    std::cout << "***********一般最小二乘平面拟合实验:************\n";
    fitPlane("svd");


    std::cout << "**************点云平面拟合实验:**************\n";
    cloud::Ptr cloud_in(new cloud);
    Eigen::Matrix<double, 3, 1> aa_mat;

    if (pcl::io::loadPCDFile<pointT>("plane.pcd", *cloud_in) < 0)
    {
        PCL_ERROR("点云文件读取失败");
    }
    else
    {
        std::cout << "点云数量:" << cloud_in->size() << std::endl;
        if (cloudPlane(cloud_in, aa_mat, "lu"))
        {
            std::cout << "平面对应的法向量:\n"
                << -aa_mat(0, 0) << "  " << -aa_mat(1, 0) << "  " << 1 << std::endl;
        }

    }

    std::cout << "Hello World!\n";
}



5结果
在这里插入图片描述
可以发现:
fitPlane函数与假设值一致,验证了理论和程序的正确性。

对于cloudPlane函数计算的法向量结果与CC拟合得到的结果对比:可以发现法向量结果几乎一致,验证了程序的正确性。
在这里插入图片描述

  • 2
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
以下是使用共轭梯度求解线性方程组的C语言代码: ```c #include <stdio.h> #include <stdlib.h> #include <math.h> #define MAX_ITER 1000 //最大迭代次数 #define EPSILON 1e-10 //收敛精度 int main() { int n = 3; //线性方程组中未知量个数 double A[3][3] = {{4, -1, 0}, {-1, 4, -1}, {0, -1, 4}}; //系数矩阵 double b[3] = {5, 5, 5}; //常数项向量 double x[3] = {0}; //解向量 double r[3] = {0}; //残量向量 double p[3] = {0}; //共轭方向向量 double alpha, beta; //步长系数 double rsold, rsnew; //残量平方和 int iter = 0; //迭代次数 //初始化解向量和残量向量 for(int i=0; i<n; ++i){ x[i] = b[i]/A[i][i]; r[i] = b[i] - A[i][i]*x[i]; p[i] = r[i]; } rsold = 0.0; for(int i=0; i<n; ++i){ rsold += r[i]*r[i]; } while(iter < MAX_ITER){ iter++; double Ap[3] = {0}; //A*p向量 for(int i=0; i<n; ++i){ for(int j=0; j<n; ++j){ Ap[i] += A[i][j] * p[j]; } } double alpha_den = 0.0; for(int i=0; i<n; ++i){ alpha_den += p[i]*Ap[i]; } alpha = rsold/alpha_den; for(int i=0; i<n; ++i){ x[i] = x[i] + alpha*p[i]; r[i] = r[i] - alpha*Ap[i]; } rsnew = 0.0; for(int i=0; i<n; ++i){ rsnew += r[i]*r[i]; } if(sqrt(rsnew) < EPSILON){ break; } beta = rsnew/rsold; for(int i=0; i<n; ++i){ p[i] = r[i] + beta*p[i]; } rsold = rsnew; } //输出结果 printf("Solution:\n"); for(int i=0; i<n; ++i){ printf("%lf\n", x[i]); } return 0; } ``` 该代码可以求解形如Ax=b的线性方程组,其中A是一个n×n的系数矩阵,b是一个n维常数项向量,x是一个n维解向量。共轭梯度是一种迭代方,可以在相对较少的迭代次数下得到较为精确的解。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值