机器人动力学简化模型(Euler-Lagrange equation)

多关节机器人动力学模型的特点:
1、动力学方程非常复杂,所含项数较多。随着关节的增加,项数呈几何增长。
2、高度非线性。
3、高度耦合。
4、不确定性。负载、摩擦、干扰等随时间变化。

n关节非线性串联机器人动力学的简化模型如下:

H(q)q¨+C(q,q˙)q˙+F(q˙)+G(q)+τd(q,q˙)=τJT(q)he

q=[q1,q2,,qn]T,τ=[τ1,τ2,,τn]T,τd=[τd1,τd2,,τdn]

其中:

hij=k=max{i,j}ntr(TkqiIk(Tk)Tqi),i,j=1,2,,n

cij=k=1n12(hijqk+hikqjhjkqi)q˙k,i,j=1,2,,n

gi=j=1nmjg¯Tjqir¯j,i,j=1,2,,n

g¯=[gx,gy,gz,1] , r¯j=[rjx,rjy,rjz,1] , Ii 为伪惯性矩阵:

Ii=Iixx+Iiyy+Iizz2IixyIixzmixi¯IixyIixxIiyy+Iizz2Iiyzmiyi¯IixyIiyzIixx+IiyyIizz2mizi¯mixi¯miyi¯mizi¯mi

其他参数和前面的动力学方程的参数意义相同。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值