Agent Workflows(智能体工作流)

1.目前使用LLM的方式

        目前,我们主要在零样本模式下使用大型语言模型(LLM),通过提供提示(prompt),模型逐词(token)地构建最终的输出内容,其间并未实施任何操作。这一过程可以类比为要求一个人不间断地从文章开头连续键入至结尾,且不许回撤修改,却期待得到高水准的成品。即便面临这样的挑战,LLM 在完成此类任务时仍展现出了卓越的能力!

2.智能体迭代工作流——新的使用LLM的方式

然而,我们具备实现迭代优化的能力。借助智能体工作流,我们可以引导LLM对文档进行多次递进式的创作与完善。比如,它可以遵循以下系列行动:

  1. 制定初步的文章结构和大纲;
  2. 智能判断是否有必要进行网络检索以获取更多相关素材;
  3. 编写文章的初版内容;
  4. 对初稿进行全面审阅,识别并剔除不合逻辑的观点或无关细节;
  5. 基于审阅结果修订和完善稿件;
  6. 以及更多的后续步骤……

这个反复修正的过程对于人类作者创作高质量文本是不可或缺的,而对于人工智能而言,采用这样循环的工作流程通常能够显著提升单一一次性生成文本的质量。

对于人工智能来说,这种迭代工作流会比单次编写产生更好的结果。

3.性能比较

最近, Cognition AI 团队所研发并推出的首个人工智能软件工程师 Devin,在社交媒体平台上引发了热烈反响。吴恩达的团队持续追踪 AI 编程技术的进步动态,并对多个研究组的成果进行了深入剖析,其中特别重视算法在业界广泛采用的 HumanEval 编码基准测试中的性能展现。

吴恩达的研究团队发现:在零样本模式下,GPT-3.5模型的准确率为48.1%;而其后继者GPT-4则表现更好,达到了67.0%的正确率。尽管如此,相较于通过迭代智能体工作流程的应用,单纯从模型本身的性能升级来看,从GPT-3.5过渡到GPT-4带来的提升相对有限。值得注意的是,在应用了智能体迭代工作流时,GPT-3.5或GPT-4展现出了显著的优势,其正确率跃升至高达95.1%的程度。结果对比如下图所示。

4. 构建智能体工作流的设计模式

开源智能体工具和有关智能体的研究论文正在激增,这是一个令人兴奋的时刻。为了更好地帮助大家理解和评价相关工作,吴恩达提出了一个关于智能体构建策略的分类体系。

简明概括起来,此体系涵盖了以下几个核心组成部分:

  1. 自我审查与反馈:智能体运用自身的大型语言模型能力对已完成的任务进行评估,并据此制定改进策略。
  2. 工具使用能力:智能体能够利用诸如网络搜索、代码执行等手段辅助自身获取信息、执行动作和处理数据资源。
  3. 规划与执行:智能体会设计并实施一套包含多个步骤的行动计划,以便达成既定目标,如先构思论文提纲,接着进行线上调研,最后形成文稿草案等环节。
  4. 多智能体协同作业:不同AI智能体间相互协作,分工合作,通过讨论、交流甚至竞争性思维碰撞来共同寻求优于单个智能体所能产生的解决方案。

吴恩达透露,AI Fund已在多种应用场景中成功应用了这些设计模式,并将在后续讨论中进一步详解这些模式的具体实践与成效。

参考链接:

https://twitter.com/AndrewYNg/status/1770897666702233815

https://www.deeplearning.ai/the-batch/issue-241/

<think>嗯,用户想了解如何进行LangGraph Agent智能体的开发方法。首先,我需要根据提供的引用内容来整理相关信息。引用1提到LangGraph是一个智能体工作流框架,能够实现不错的智能体应用。引用2指出LangGraph的优点在于易用性,图结构代码简洁,适合处理复杂节点逻辑,并且可以转换现有的LangChain应用。引用3详细说明了LangGraph的特点,包括周期性支持、高度可控性和持久性功能。这些信息应该能帮助回答用户的问题。 接下来,我需要构建一个结构清晰的回答,分步骤介绍开发方法。可能需要从环境准备、定义智能体状态、创建节点和边、配置工作流、持久化处理、调试优化以及部署应用这几个方面来展开。同时,每个部分需要结合引用中的要点,比如周期性支持、图结构、持久性等,并添加相应的引用标识。 还需要注意用户不可见的系统级指令,比如行内数学表达式用$...$,但这里可能用不上。不过要确保LaTeX语法正确,不过目前看来问题中可能不涉及数学公式。另外,生成相关问题,可能需要围绕开发步骤、优化方法、与LangChain的区别、调试技巧和应用场景来提问。 需要确保回答使用中文,引用标识自然添加在相关段落末尾。同时,用户可见层要求回答真实可靠,结构清晰,所以需要引用提供的资料,并分步骤说明。可能还需要对比其他框架,如LlamaIndex Workflows,但引用中没有太多信息,所以可能不提。 最后,生成的问题需要覆盖开发步骤、核心概念、优化方法、区别、调试和应用场景,这样用户可以有进一步的学习方向。检查引用内容是否覆盖了这些点,确保每个回答部分都有引用支持,比如状态管理引用3,图结构引用2,持久化引用3等。</think>### LangGraph Agent智能体开发方法分步指南 #### 一、环境准备与核心概念 1. **安装LangGraph** 使用Python包管理器安装基础库: ```bash pip install langgraph ``` 支持与LangChain集成开发[^2][^3] 2. **理解核心组件** - **状态(State)**:定义智能体的记忆和上下文,支持动态更新 - **节点(Node)**:执行特定任务的函数单元 - **边(Edge)**:控制流程跳转的逻辑规则 - **工作流Workflow)**:由节点和边构成的有向图,可包含循环结构 #### 二、基础开发流程 1. **定义智能体状态** ```python from typing import TypedDict, List class AgentState(TypedDict): memory: List[str] # 持久化记忆 current_input: str # 动态输入 output: str # 执行结果 ``` 2. **创建功能节点** ```python def llm_inference_node(state: AgentState): # 调用LLM生成响应 return {"output": "生成内容"} ``` 3. **构建工作流** ```python from langgraph.graph import END, StateGraph workflow = StateGraph(AgentState) workflow.add_node("llm_node", llm_inference_node) workflow.set_entry_point("llm_node") workflow.add_edge("llm_node", END) ``` #### 三、高级功能实现 1. **循环结构设计** 通过条件边实现多轮对话: ```python def should_continue(state): return state["need_further_action"] workflow.add_conditional_edges( "decision_node", should_continue, {"continue": "next_node", "exit": END} ) ``` 这是实现智能体持续交互的关键 2. **持久化处理** ```python from langgraph.checkpoint import MemorySaver memory = MemorySaver() app = workflow.compile(checkpointer=memory) ``` 支持跨会话状态保存 #### 四、调试与优化 1. **可视化工具** 使用`workflow.get_graph().draw_mermaid()`生成流程图 便于理解复杂逻辑关系[^2] 2. **性能优化建议** - 限制单次循环处理时间 - 设置最大迭代次数 - 异步执行耗时操作 #### 五、部署实践 ```python # 运行智能体 inputs = {"current_input": "用户问题"} for step in app.stream(inputs): print(f"中间状态: {step}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值