在人工智能不断发展的今天,我们迎来了一款令人瞩目的工具——llama-assistant。它就像一位智能伙伴,时刻准备着为我们提供各种帮助。想象一下,有一个智能伙伴,它能听懂你的每一句话,无论是通过语音还是文字输入;它能理解你复杂的需求,无论是知识问答、文本创作,还是日常任务管理;它还能在保护你隐私的前提下,为你提供精准、高效的服务。这不再是科幻电影中的场景,而是 llama - assistant 为我们带来的现实。
一、llama-assistant简介
llama-assistant是一个由Llama 3.2驱动的AI助手,它具有强大的功能,可以识别语音、处理自然语言,并根据用户的命令执行各种操作。无论是文本总结、句子改写、回答问题,还是写邮件等任务,它都能轻松应对。
二、项目亮点
1. 本地运行,保护隐私
与许多在线服务不同,llama-assistant可以在你的本地机器上离线运行。这意味着它不会将你的任何数据发送到外部服务器,充分尊重你的隐私,让你使用起来更加放心。
2. 丰富的功能
-
语音交互:它支持语音识别,实现免提交互。你只需说出你的需求,它就能理解并为你服务。无论是在忙碌的工作中,还是在不方便打字的时候,语音交互都能让你更加便捷地使用这款工具。
-
自然语言处理:基于强大的Llama 3.2模型,llama-assistant能够深入理解自然语言。它可以准确地理解你的问题,并给出精准的回答。无论是复杂的专业问题,还是日常的闲聊,它都能应对自如。
-
多任务处理:除了回答问题,它还能进行文本总结、句子改写、写邮件等多种任务。无论你是需要整理文档,还是需要创作邮件,它都能成为你的得力助手。
3. 可定制性
llama-assistant具有可定制的UI,你可以根据自己的喜好调整透明度等参数,使其更符合你的使用习惯和视觉需求。
4. 支持多种模型
它支持多种文本模型,如Llama 3.2-1B、3B(4/8-bit quantized),Qwen2.5-0.5B-Instruct(4-bit quantized),Qwen2.5-1.5B-Instruct(4-bit quantized),gemma-2-2b-it(4-bit quantized)以及其他LlamaCPP通过自定义模型支持的模型。此外,它还支持一些多模态模型,如Moondream2、MiniCPM-v2.6、LLaVA 1.5/1.6等,并且未来还可能支持更多的模型,为你提供更多的选择。
三、安装与使用
1. 安装步骤
-
首先,推荐使用Python 3.10版本。
-
在不同的操作系统上,需要进行一些额外的操作。例如,在Mac OS X上,你可以使用Homebrew安装PortAudio:`brew install portaudio`;在Debian / Ubuntu Linux上,使用:`apt-get install portaudio19-dev python3-all-dev`。对于Windows系统,可能无需显式安装PortAudio(它会随PyAudio安装),但也可以按照特定的方式进行安装。
-
此外,Windows用户还需要安装MinGW-w64工具链。你可以按照相关链接的说明进行下载安装。
-
接下来,你可以通过以下两种方式进行安装:
a.从PyPI安装:
pip install pyaudio``pip install git + https://github.com/stlukey/whispercpp.py``pip install llama-assistant
b.从源代码安装:
克隆仓库:
`git clone https://github.com/vietanhdev/llama-assistant.git`
进入目录并安装依赖和包:
`cd llama-assistant``pip install pyaudio``pip install git + https://github.com/stlukey/whispercpp.py``pip install-r requirements.txt``pip install.`
对于Apple Silicon用户,还可以安装Xcode,并在构建`llama-cpp-python`时添加METAL支持,以获得加速效果。
2. 使用方法
安装完成后,你可以通过运行命令`llama-assistant`或`python-m llama_assistant.main`来启动它。
你还可以使用全局热键(默认:Cmd + Shift + Space)快速访问它。此外,通过编辑`~/llama_assistant/settings.json`文件,你可以定制各种设置,满足自己的个性化需求。
四、未来展望
llama-assistant还有许多待办事项(TODO),这也让我们对它的未来充满期待。
它计划支持多模态模型moondream2,并添加唤醒词检测功能,让你的使用更加便捷。同时,它还将支持自定义模型,让你可以根据自己的需求和数据进行个性化定制。此外,它还会支持更多的文本和多模态模型,为你提供更丰富的功能。
它还将支持响应流,让你在与它交互时能够获得更加实时和流畅的体验。同时,它还会添加离线语音转文本支持,进一步提高语音交互的便利性。
在功能扩展方面,它将构建知识数据库,为你提供更全面和准确的信息。它还将添加插件系统,让你可以根据自己的需求扩展它的功能。此外,它还将集成邮件、笔记和任务管理功能,以及音乐和播客集成功能,成为你生活和工作中的全方位助手。
它还将支持多语言,让全球各地的用户都能方便地使用。并且,它还会为不同的操作系统进行打包,方便不同系统的用户安装和使用。最后,它还将建立自动化测试和CI/CD管道,不断提高自身的稳定性和可靠性。
五、结语
llama-assistant作为一款强大的本地AI助手,为我们带来了便捷、高效和隐私保护的人工智能服务。它的丰富功能、可定制性以及对多种模型的支持,使其在众多工具中脱颖而出。随着它的不断发展和完善,我们相信它将在未来为我们的生活和工作带来更多的便利和创新。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。