2021.11.20【读书笔记】|差异可变剪接事件及DTU分析

  • 一、可变剪接(Alternative Splicing)
    • 定义:
      • 同一前体mRNA分子,可以在不同的剪接位点发生剪接反应,生成不同的mRNA分子,最终产生不同的蛋白质分子的一种RNA剪切方式。
    • 意义:
      • 1. AS是形成生物多样性的重要原因之一
      • 2. AS是基因表达调控的重要组成部分,与基因表达的时空性息息相关
      • 3. 由于可变剪接直接造成表达产物的差异,因此可变剪接在一些性状、疾病中发挥重要作用。
    • 识别:
      • 分成了7个类型
    • 识别工具:
      • SUPPA,#目前已升级为SUPPA2
      • 1.计算时间短。小数据,数分钟可以完成计算。
      • 2.识别可变剪接边界严格。
      • 3.结果可进行可视化展示,也可进行后续更进一步分析。
  • 二、差异可变剪接:DAS
    • 研究意义
      • 1.着重发现在外界环境改变时,表达量发现显著变化的可变剪接事件。
      • 2.这些可变剪接事件可能是更适应(或者更不适应)新的环境条件的。
      • 3.但是当研究基因表达量整体时,这种特定结构的表达量变化可能会被掩盖。
      • PSI
        • 计算方法
          • FPKM与TPM值计算差异
          • PSI值=split_in/(split_in+split_out)(TPM值)
        • PSI显著检验方法(略)
        • 后续分析
          • 流程

        • 筛选标准
          • |dPsi|>0.1, P-value<0.05
  • 三、DAS分析实例
    • 1.DAS的应用:
      • 文献:Large-scale analysis of genome and transcriptome alterations in multiple tumors unveils novel cancer-relevant splicing networks
      • (https://genome.cshlp.org/content/26/6/732.full)
      • 期刊:Genome Research
      • 影响因子:11.351
      • 发表时间:2016年
    • 2.研究目的:研究11种癌症中,可变剪接的类型的变化情况及在RNA结合蛋白的结合域上的富集情况。
    • 3.推测:在癌症中,RBP基因(RNA蛋白结合基因)突变可能与反常的可变剪接模式相关 。
    • 4.做了如下分析:
      • ①11中癌症中,DAS的类型分布;
      • ②在cancer-drivers中,DAS与基因突变及差异表达的关系;
      • ③在RBP基因中,DAS与基因突变及表达的关系;
      • 1

      • 2

      • 3

      • 4

      • 5

      • 6

    • 5.总结
      • 1.该文献发现:在研究的11种癌症类型中,DAS在多种癌症的cancer-drivers中分较为普遍;
      • 2.在cancer-drivers中,DAS的发生与突变或者表达量改变没有必然关系;
      • 3.在RBPs中,DAS在某些癌症类型中分布比例较高;
      • 4.发生在RBPs中的DAS,与表达量没有显著相关,但是与突变可能存在潜在的关系;
      • 5.一些癌症间可能存在潜在的调控DAS的共有机制。
  • 四、DTU分析简介
    • 1.DTU:Different Transcript Usage
    • 2.DTU分析的意义:同一个转录本可能同时发生多种复杂的结构变化,这时,关注这个转录本整体的变化情况而非具体的某一种可变剪接。
    • 3.DAS与DTU的区别:DAS着重于分析具体某一个可变剪接事件在不同条件下的差异;而DTU不单独关注某一可变剪接事件,而是侧重于发生了可变剪接的这个转录本整体。
      • 1.主要针对结构变异类型较多、结构复杂的转录本。
      • 2.忽略基因表达量的影响,更有针对性的找到响应环境变化的转录本类型。
      • 3.三代全长转录本在检测结构变异上有较为明显的优势,对于结构复杂且响应环境变化的转录本,具有较为明显的研究优势。
    • 2

    • 总结
      • 1.SUPPA识别可变剪接类型齐全,且对结果有详细展示。
      • 2.DAS分析,是在表达层面,更深入的挖掘可变剪接可能存在的生物学意义。
      • 3.DTU与DAS研究的方法相似,主要区别在于研究的对象不同。
      • 4.DAS/DTU研究后续可增加富集、注释等内容,更深入的探讨差异事件/转录本的潜在功能。
  • 以上内容来源于诺禾课程笔记梳理
  • 欢迎加群交流,或者加VX:bbplayer2021,邀请进群

 

<think>好的,我需要帮助用户查找与SUPPA2和dPSI=1相关的IT内容。首先,我需要理解用户提到的这两个关键点:SUPPA2工具和dPSI=1的参数设置。根据用户提供的引用内容,特别是引用[1]、[5]中的命令行示例,dPSI可能代表差异剪接的psi值变化阈值,而设置dPSI=1可能是指筛选那些psi值变化超过1的事件,但这里可能存在误解,因为psi值的范围通常在0到1之间,所以dPSI=1可能不太合理,可能是用户记错了参数名称或值。 接下来,我需要检查SUPPA2的文档或用户提供的引用内容,确认是否存在dPSI参数。根据引用[5]中的命令:`suppa.py diffSplice --method empirical --input ... --psi Cond1.psi Cond2.psi --tpm ... -o output`,这里并没有直接提到dPSI参数,但可能有一些其他参数用于设定差异剪接的阈值,比如`--area`或`--lower-bound`。引用[1]中的命令使用了`--area 1000`和`--lower-bound 0.05`,这些可能和差异筛选有关,但需要进一步确认。 用户可能混淆了参数名称,正确的参数可能是`--threshold`或者其他类似的选项。在生物信息学工具中,差异剪接分析通常会使用delta PSI(dPSI)作为变化的阈值,比如设置dPSI≥0.1或0.2来筛选显著变化的事件。如果用户想设置dPSI=1,这在生物学上可能不合理,因为PSI值范围是0到1,dPSI=1意味着某个事件在一个条件下完全包含,另一个条件下完全排除,这种情况较为罕见,但可能存在。需要确认SUPPA2是否允许这样的设置,或者用户是否误用了参数名。 此外,用户提到“IT相关内容”,可能需要了解SUPPA2在信息技术方面的应用,比如如何处理大数据、并行计算、软件架构等。引用[4]提到SUPPA2使用Python 3.4,具有高效的事件生成算法和PSI计算模型,这可能涉及算法优化、数据处理效率等IT技术。 综合以上分析,我需要回答用户的问题,指出dPSI=1可能存在的问题,并指导正确的参数设置,同时提供SUPPA2在IT方面的技术分析。需要引用用户提供的引用内容来支持回答,并生成相关问题。</think>### SUPPA2与差异剪接分析中dPSI参数解析 #### 1. dPSI参数的作用与设置 在SUPPA2的差异剪接分析中,dPSI(Delta PSI)表示样本间剪接事件包容性水平(PSI值)的变化幅度。根据引用[5]的代码示例,差异剪接分析通过`suppa.py diffSplice`命令实现,但**直接设置`dPSI=1`的参数并不存在于SUPPA2的标准命令中**。实际分析中,差异剪接事件的筛选通常通过以下两种方式实现: - **统计显著性阈值**:使用`-p`或`-e`参数指定p值或错误发现率(FDR)阈值,例如`-p 0.05`表示筛选p值≤0.05的事件[^5]。 - **生物学变化阈值**:通过`--area`和`--lower-bound`参数间接控制PSI变化的幅度。例如`--area 1000 --lower-bound 0.05`表示在PSI值分布曲线下面积≥1000且变化幅度下限≥5%的事件[^1]。 #### 2. 关于dPSI=1的可行性 PSI值的范围是$[0,1]$,因此理论上dPSI=1仅出现在以下极端情况: - 事件在条件A中完全包含(PSI=1),在条件B中完全排除(PSI=0) - 或反之 这类事件在实际生物学场景中极少出现。若需筛选高置信度的显著差异事件,建议结合统计显著性(p值/FDR)和合理的变化幅度(如dPSI≥0.2)进行综合判断[^4]。 #### 3. SUPPA2的IT技术特性 从信息技术角度看,SUPPA2的设计包含以下关键特性: - **高效事件生成算法**:通过解析GTF注释文件自动生成局部/转录本剪接事件,支持大规模RNA-seq数据分析 - **并行计算优化**:基于Python 3.4实现多进程处理,提升PSI值计算的效率(引用[4]提到其可处理“外显子”信息的高效性) - **数据压缩技术**:使用`-gc`参数启用基因组坐标压缩,减少中间文件存储空间占用[^5] - **结果可靠性保障**:集成经验分布模型(`--method empirical`)进行不确定性评估,提高差异事件检测的准确性[^2] #### 4. 操作建议 若需筛选极端差异事件(接近dPSI=1),可通过以下步骤实现: ```bash # 步骤1:分割PSI和TPM文件(引用[3]) cut -f 1-56 SRR_events.psi > control.psi cut -f 1-47 SRR1_events.psi > treat.psi # 步骤2:执行差异分析(引用[1][5]) suppa.py diffSplice -m empirical -i events.ioe -p treat.psi control.psi \ -e treat.tpm control.tpm --area 1000 --lower-bound 0.95 -gc -o output # 步骤3:筛选结果(假设输出文件为output.dpsi) awk 'sqrt($3^2) > 0.99' output.dpsi > extreme_events.txt ``` 此方法通过`--lower-bound 0.95`限制最小变化幅度为95%,再通过awk命令筛选绝对变化值>0.99的事件(接近dPSI=1)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

穆易青

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值