当下,大模型应用开展得如火如荼,像Deepseek等各大 LLM 都推出了在线助手服务。结合mcp-server,还能将功能拓展至本地工具。然而,对于那些与本地业务及数据紧密相连的资料,在线大模型的训练数据集通常难以覆盖。尤其是涉及敏感数据或对安全要求极高的数据时,使用在线大模型显然并不现实。因此,在个人应用和实际工作中,本地部署大模型并接入本地知识库成为了一项刚性需求。
本文将详细记录如何在 WSL 中借助 Ollama 和 CherryStudio 搭建本地大模型,并将本地模型集成到 VsCode 的 AI 助手中。
1、Ollama 是什么
Ollama 是一个基于 Go 语言开发的本地大语言模型运行框架,其设计初衷是为了让用户能在本地机器上轻松部署和运行大型语言模型(LLM)。Ollama 是 Omni - Layer Learning Language Acquisition Model(全方位学习语言接受模型) 的简写。
Ollama 提供了一种简便的方式来加载和使用各种预训练语言模型,能够在本地完成各类大模型的智能助手任务。它的优势不仅在于提供现成的模型和工具集,还在于配备了便捷的界面和 API,使得从文本生成、对话系统到语义分析等任务都能迅速实现。
2、Deepseek 本地模型及运行配置须知
Deepseek 根据本地部署所包含的参数集大小,拥有从1.5B到671B等多个版本。参数集越大,AI 的智能程度越高,但相应地,对硬件的要求也更为苛刻。一般来说,不同 deepseek 模型版本对应的推荐硬件配置如下:
模型型号 | CPU | 内存 | 硬盘 | 显存 | 适用场景 |
---|---|---|---|---|---|
DeepSeek - R1 - 1.5B | 4 核 | 8 GB+ | 3 GB+ | 非必需(若需 CPU 加速可选 GTX 1650) | 个人使用,如笔记本电脑、台式电脑等 |
DeepSeek - R1 - 7B | 8 核 | 16 GB+ | 8 GB+ | 8 GB + 显存(如 RTX 3070/4060) | 中小型企业本地开发 |
DeepSeek - R1 - 8B | 8 核 | 16 GB+ | 8 GB+ | 8 GB + 显存 | 中小型企业本地开发(提升精度的轻量级任务) |
DeepSeek - R1 - 14B | 12 核 | 32 GB+ | 15 GB+ | 16 GB + 显存(如 RTX 4090 或 A5000) | 中小型企业本地开发(中量级任务) |
DeepSeek - R1 - 32B | 16 核 | 64 GB+ | 30 GB+ | 24 GB + 显存(如 A100 40 GB 或 RTX 3090) | 专业领域任务,如医疗、科研、法律 |
DeepSeek - R1 - 70B | 32 核 | 128 GB+ | 70 GB+ | 多卡并行(如 2x A100 80GB 或 4x RTX 4090) | 大型企业或科研机构,专业领域任务处理 |
DeepSeek - R1 - 671B(满血版) | 64 核 | 512 GB+ | 300 GB+ | 多卡并行(如 8x A100/H100) | 国家级科研任务处理 |
对于个人用户而言,可依据自身电脑的配置情况,通常选择 1.5B 到 14B 的版本。当然,如果对本地模型的使用频率不高,个人建议可以将配置与推荐模型降一档进行匹配。
3、借助 Ollama 在 WSL 中部署本地 Deepseek
由于笔者目前主要想将一些本地数据接入 Deepseek,且没有高频使用本地 LLM 的需求,所以在此选择部署DeepSeek - R1 - 14B。另外,为避免每次启动电脑时 LLM 运行占用大量资源,打算在 Windows 电脑的 WSL 下运行 LLM。
WSL 配置先行
若当前系统尚未启用 WSL,可先进行启用操作(具体过程在此不再赘述,在 Win11 中运行 WSL install [对应 Linux 发行版] 即可完成安装)。通过命令行可查看WSL状态:
通过命令行查看WSL状态:
C:\qiucao>wsl --status
默认分发: Ubuntu-24.04
默认版本: 2
WSL 默认的网络模式是 NAT,可通过WSL Setting程序,将当前配置修改为Mirrored镜像模式,这样便能共用宿主机网络。
下载安装 Ollama
进入 Ollama 官网 (https://ollama.com/) 的下载界面,鉴于我们是在 WSL 中进行部署,所以应选择 Linux 安装。执行以下命令,等待下载并自动安装完成:
执行如下命令,等待下载并自动安装完成。
curl -fsSL https://ollama.com/install.sh | sh
# 安装完成查看版本
~$ ollama --version
ollama version is 0.6.5
着手部署 deepseek
完成 ollama 安装后,即可依据 Ollama 提供的大模型清单,挑选对应的大模型进行安装。目前支持的大模型清单,可从官网的这个地址查询:https://ollama.com/library 。执行以下命令来下载并运行 deepseek:
执行如下命令下载并运行deepseek
ollama run deepseek-r1:14b
安装成功后,可通过提问来测试 deepseek 是否已正常提供服务。
添加知识库分析模型
到这里,Deepseek 其实已在本地部署完成。但倘若要通过 Deepseek 使用本地数据和文档,还需部署一个语义向量模型(Embedding Model),其作用是将本地数据转化为大模型可分析的知识库数据。在此我们选择bge - m3模型,这是一个通用向量模型,能够支持多语言、长文本以及多种检索方式。执行:
执行:
ollama pull bge-m3
用Cherry Studio管理知识库并提供本地交互界面
安装完 Deepseek 后,虽然能够在命令界面下与 deepseek 进行交互,但这种方式不够友好,而且对本地知识库的管理也不太方便。因此,我们还可以安装一个开源的本地 AI 助手和知识库客户端 Cherry Studio。从官网(https://cherry - ai.com)下载 windows 版本进行安装即可。
打开Cherry Studio,按如下步骤添加我们刚刚通过ollama部署的Deepseek
会看到已经安装好的模型,添加进来
然后就可以利用Cherry Studio的知识库管理,将我们需要加入的本地文档纳入大模型的数据集中。这里包括直接添加文件、直接指定目录、从网站采集等多种方式,非常方便。
把本地 Deepseek 集成到 vscode
拥有本地的 LLM 后,如果希望在 vscode 中使用,可借助 vscode 的AI Toolkit插件,按照特定方式添加本地 LLM,
随后在 vscode 中就能测试本地 AI 的能力了。
以上就是我们部署本地Deepseek的实践分享, 欢迎继续关注后续更多技术干货~~
我的DeepSeek部署资料已打包好(自取↓)
https://pan.quark.cn/s/7e0fa45596e4
但如果你想知道这个工具为什么能“听懂人话”、写出代码 甚至预测市场趋势——答案就藏在大模型技术里!
❗️为什么你必须了解大模型?
1️⃣ 薪资爆炸:应届大模型工程师年薪40万起步,懂“Prompt调教”的带货主播收入翻3倍
2️⃣ 行业重构:金融、医疗、教育正在被AI重塑,不用大模型的公司3年内必淘汰
3️⃣ 零门槛上车:90%的进阶技巧不需写代码!会说话就能指挥AI
(附深度求索BOSS招聘信息)
⚠️警惕:当同事用DeepSeek 3小时干完你3天的工作时,淘汰倒计时就开始了。
那么,如何系统的去学习大模型LLM?
作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?老师啊,我自学没有方向怎么办?老师,这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!当然这些问题啊,也不是三言两语啊就能讲明白的。
所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。
篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
👉大模型学习指南+路线汇总👈
我们这套资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
👉①.基础篇👈
基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
👉②.进阶篇👈
接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
👉③.实战篇👈
实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
👉④.福利篇👈
最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!