(1) 改进的深度学习模型用于数字全息相位图像的重建
数字全息技术是一种高效的三维成像技术,能够实现物体的光学特性采集、存储和重构。然而,传统的全息重建方法往往需要复杂的实验条件和高精度的设备,这对重建结果的质量和速度产生了限制。近年来,深度学习技术在图像处理领域取得了显著的进展,这使得其在数字全息重建中的应用变得尤为重要。基于深度学习的方法不仅能突破光学系统的衍射极限,还可以在计算处理中减少人工干预,实现更高效的实时重建。
为了提高数字全息相位图像的重建质量,本文改进了基于U-Net的端到端重建方法,引入了空洞卷积和注意力机制,设计了一种新的网络框架——Udanet。Udanet结合了残差网络的特性,能够在多层次上提取特征,从而有效改善重建质量。该网络首先通过空洞卷积增加了感受野,使得网络能够捕捉更大范围内的上下文信息,从而提高了对细节的识别能力。此外,注意力机制的引入使得模型能够聚焦于输入图像中更重要的部分,从而进一步提升重建的精度。
在实验中,经过充分训练的Udanet对不同类型的全息样本进行测试,输出的相位重建结果显示出高质量的图像特征。通过定性和定量的评价方法,验证了Udanet在端到端数字全息实时重建中的有效性。实验结果表明,Udanet在处理复杂全息图时的表现优于传统的全息重建方法。进一步分析发现,网络内部不同参数和模块的组成对模型的性能有显著影响,针对这些参数进行调整与优化可以进一步提升重建效果。
(2) 基于生成对抗网络的深度学习重建方法
在深度学习的数字全息重建中,泛化能力是模型成功应用于实际场景的重要指标。为了提高深度学习重建方法的泛化能力,本文提出了一种基于生成对抗网络(GAN)的数字全息重建方法。该方法利用模拟生成的全息图代替真实实