基于深度学习的结构损伤识别与传感器优化布置研究【附代码】

(1) 结构健康监测 (Structural Health Monitoring, SHM) 是确保复杂结构在长期运营中保持安全和稳定状态的关键手段之一。在SHM中,传感器优化布置和结构损伤识别(Structural Damage Identification, SDI)是两个核心环节。传感器布置的合理性决定了数据的采集质量,而损伤识别是对结构安全状况进行诊断和评估的关键步骤。近年来,深度学习技术在结构损伤识别领域展现了显著的潜力。与传统方法相比,深度学习能够通过大规模数据的训练,自动提取出有效的损伤特征,减少对专家经验的依赖,从而提高识别的准确性和效率。

为了解决传感器布置问题,本文提出了一种基于智能优化算法的传感器优化布置方法。该方法通过设计新的个体初始化机制以及进化策略,改善了传统算法在个体进化过程中的盲目性问题。具体来说,首先引入了一种基于传感器覆盖密度的个体初始化方法,这一方法能够动态调整传感器布置数量,并确保传感器布置方案覆盖结构的关键部位。其次,借鉴人工蜂群算法中的信息交换机制,本文提出了一种匹配保优进化策略,通过优化个体进化过程中的信息交换,减少了进化方向的随机性,从而提高了算法的收敛速度。与此同时,结合天牛须搜索算法的快速迭代特点,设计了一种带有吞噬淘汰策略的优化竞争机制。这一改进使得算法能够在全局搜索的同时有效避免局部最优。通过对桥梁结构进行模态分析验证,结果表明,所提算法在传感器布置优化方面具有优越的性能。

(2) 针对结构损伤识别过程中对数据多样性的需求,本文进一步构建了一种基于多目标优化的传感器布置准则。现有研究多以单目标优化为主,往往侧重于单一方面的数据质量,如结构模态的正交性。然而,在深度学习损伤识别中,丰富的损伤信息同样重要。为此,本文提出了一种融合模态保证准则和Fisher信息矩阵的多目标优化函数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值