GARCH模型与机器学习在金融波动率分析中的应用毕业论文【附数据】

📊 金融数据分析与建模专家 金融科研助手 | 论文指导 | 模型构建

✨ 专业领域:

金融数据处理与分析
量化交易策略研究
金融风险建模
投资组合优化
金融预测模型开发
深度学习在金融中的应用


💡 擅长工具:

Python/R/MATLAB量化分析
机器学习模型构建
金融时间序列分析
蒙特卡洛模拟
风险度量模型
金融论文指导


📚 内容:

金融数据挖掘与处理
量化策略开发与回测
投资组合构建与优化
金融风险评估模型
期刊论文
 

具体问题可以私信或查看文章底部二维码

✅ 感恩科研路上每一位志同道合的伙伴!

本文主要关注低频时间序列的波动率预测问题。传统的GARCH类模型,如ARCH和GARCH,能够较好地捕捉时间序列的条件异方差性,即波动率随时间的变化。然而,这些模型在实际应用中可能需要大量的参数,限制了其在复杂数据集上的应用。为了解决这一问题,本文提出了将XGBOOST算法与GARCH模型相结合的GARCH-XGBOOST模型。XGBOOST作为一种基于梯度提升的集成学习算法,以其高效的预测性能和对非线性问题的强建模能力而被广泛使用。通过网格搜索法对XGBOOST的超参数进行优化,可以进一步提高模型的预测精度。此外,考虑到金融数据的高峰厚尾特征,本文还构建了GARCH-GED-XGBOOST模型和GARCH-t-XGBOOST模型,以更好地描述数据的分布特性。同时,为了捕捉数据的非对称性,本文提出了结合GJR模型和XGBOOST算法的GJR-XGBOOST模型

  • 实证分析与模型比较 本文选取了沪深300、上证综指和中小板指三支股指数据进行实证分析。通过计算均方误差(MSE)、平均绝对误差(MAE)和似然比(QLIKE)三种损失函数,检验了GARCH-XGBOOST模型、GARCH-SVR模型、GJR-SVR模型和GJR-XGBOOST模型的预测精度。实验结果表明,GARCH-XGBOOST模型在三支股指的预测效果上优于GARCH-SVR模型,而GJR-XGBOOST模型由于能够描述波动的非对称性,在大多数情况下具有更大的泛化能力和更高的波动率预测精度

  • 模型应用与扩展 本文的实证分析不仅验证了所提模型的有效性,还扩展了这些模型的实用效果。通过选择股指收益与其均值偏差的平方作为波动率度量,检验了分阶段预测方法的精度,增强了方法的可推广性。此外,本文的研究还为金融衍生品定价、金融资产配置和风险管理等方面提供了有价值的参考,具有重要的实际应用意义。

日期沪深300日收益率(%)预测波动率(%)
2024-04-010.51.2
2024-04-02-0.31.5
2024-04-030.81.1
2024-04-04-0.61.8
2024-04-050.71.3
2024-04-060.21.0


data = readtable('financial_time_series.csv');

% 显示数据的前几行
head(data)

% 计算日收益率的平均值和标准差
meanReturn = mean(data.日收益率);
stdReturn = std(data.日收益率);

% 绘制日收益率和预测波动率的图表
figure;
subplot(2,1,1);
plot(data.日期, data.日收益率, '-o');
title('沪深300日收益率');
xlabel('日期');
ylabel('日收益率(%)');

subplot(2,1,2);
plot(data.日期, data.预测波动率, '-s');
title('预测波动率');
xlabel('日期');
ylabel('预测波动率(%)');

% 保存分析结果到新的CSV文件
writetable(data, 'analyzed_financial_time_series.csv');

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值