数据驱动的金融时间序列混合预测模型研究:整合GARCH与支持向量机【附数据】

📊 金融数据分析与建模专家 金融科研助手 | 论文指导 | 模型构建

✨ 专业领域:

金融数据处理与分析
量化交易策略研究
金融风险建模
投资组合优化
金融预测模型开发
深度学习在金融中的应用


💡 擅长工具:

Python/R/MATLAB量化分析
机器学习模型构建
金融时间序列分析
蒙特卡洛模拟
风险度量模型
金融论文指导


📚 内容:

金融数据挖掘与处理
量化策略开发与回测
投资组合构建与优化
金融风险评估模型
期刊论文
 

具体问题可以私信或查看文章底部二维码

✅ 感恩科研路上每一位志同道合的伙伴!

(1)单变量金融时序数据预测模型

现代金融理论的核心问题是如何在不确定的环境下对资源进行跨期的最优配置。金融系统的不确定性源于其自身是一个受多种因素综合影响的具有开放性质的复杂巨系统,相应地,作为系统观测值的金融时序数据则从形式上表现了该系统的复杂运动规律。相关金融时序可预测性的文献研究表明,无论是线性范式下的传统统计方法,还是非线性的计算智能方法,以及多种不同类型方法的组合模型都在一定范围内提升了人们对金融时序数据预测的精确性和稳定性。然而,这些方法大多缺乏对不同类型金融时序数据内部时间相关性知识、价格变化趋势信息以及不同市场间互信息等经验知识的有效融合,制约了其预测性能的进一步提高。

  • 基于微分信息的ARMA-GARCH模型

    • 模型构建:针对单变量金融时序数据变化趋势信息和市场隔夜跳空开盘信息的重要性,本研究在借助跟踪微分器提取数据近似微分的基础上,构造了基于微分信息的ARMA-GARCH单预测模型。ARMA-GARCH模型能够同时处理数据的自相关性和条件异方差性,提高了模型在高噪声扰动环境下的鲁棒性。
    • 模型改进:为了增强模型在高噪声扰动环境下对时序数据变化趋势的判别能力,本研究还提出了基于梯度信息的ARMA-GARCH模型。梯度信息能够捕捉数据的局部变化趋势,进一步提高了模型的预测精度和稳定性。
    • 实证分析:通过实证分析,对比了基于微分信息和基于梯度信息的ARMA-GARCH模型在不同市场和不同时间段的表现。结果表明,这两种模型在处理高噪声数据时具有较高的准确性和稳定性,能够有效捕捉金融时序数据的变化趋势。
  • 基于ARIMA和泰勒展开的预测模型

    • 模型构建:从分阶段混合模型构造的角度,提出了一种新的基于ARIMA和泰勒展开的预测模型。AR
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值