Ceres solver 学习-求解器类型

本文介绍了Ceres Solver中的8种求解器,包括适用于小规模问题的DENSE_QR,基于Eigen和SuiteSparse/CXSparse的CHOLESKY分解方法,以及用于BA问题的SCHUR分解。此外,还提到了适用于大尺度场景的ITERATIVE_SCHUR和使用共轭梯度法的CGNR。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Ceres solver 里面定义了8种求解器(ceres/include/ceres/types.h),分别是:

DENSE_QR: 用于小规模最小二乘问题的求解,基于Eigen;

List item DENSE_NORMAL_CHOLESKY&SPARSE_NORMAL_CHOLESKY: cholesky分解,用于具有稀疏性的大规模非线性最小二乘问题求解;前者基于Eigen,后者基于SuiteSparse or CXSparse;

DENSE_SCHUR&SPARSE_SCHUR: SCHUR分解,用于BA问题求解;前者基于Eigen,后者基于CHOLMOD;

ITERATIVE_SCHUR: 使用共轭梯度schur求解BA问题,适用于大尺度场景;

CGNR: 使用共轭梯度法求解稀疏方程;

### 使用Ceres-Solver在MATLAB中实现最小二乘求解 #### 安装依赖项和设置环境 为了能够在 MATLAB 中调用 Ceres-Solver 进行最小二乘问题的求解,首先需要完成一系列准备工作。这包括但不限于安装必要的工具链以及配置开发环境。 对于 Windows 用户,在 Visual Studio 上配置 Ceres-solver 是一个常见的选择[^1]。然而,由于 Ceres 主要是一个基于 C++ 的库,并不直接支持 MATLAB 接口,因此通常的做法是通过 MEX 文件创建接口以便于从 MATLAB 调用 Ceres 函数。这意味着还需要具备编译这些文件的能力,即拥有合适的 C/C++ 编译器和支持包。 #### 创建MEX接口 一旦完成了上述准备步骤,则可以着手编写用于连接 MATLAB 和 Ceres Solver 的 MEX 函数。此过程涉及定义成本函数(Cost Function),该函数描述了模型预测值与实际观测之间的差异;随后将其封装成适合传递给 ceres::Problem 对象的形式。具体来说: - **构建 CostFunction**: 需要在 C++ 侧定义继承自 `ceres::SizedCostFunction` 或者 `ceres::AutoDiffCostFunction` 类的成本类; - **注册参数块 (Parameter Blocks)**: 将待优化变量作为参数传入到 Problem 实例中; - **设定选项并启动求解流程** : 设置诸如终止条件之类的求解器选项之后执行 Solve 方法。 ```cpp // 假设有一个简单的线性回归案例 y = mx + b; class LinearResidual { public: template <typename T> bool operator()(const T* const m, const T* const b, T* residual) const { *residual = T(y_) - (*m)*T(x_) - (*b); return true; } private: double x_; double y_; static ceres::CostFunction* Create(const double x, const double y) { return new AutoDiffCostFunction<LinearResidual, 1 /* number of residuals */, 1 /* size of first parameter */ , 1>( new LinearResidual(x, y)); } }; ``` 这段代码展示了如何利用自动微分机制来简化残差计算的过程[^2]。 #### 数据处理与输入输出管理 考虑到 MATLAB 方便的数据操作特性,建议将原始数据集保存为 .mat 文件或其他易于读取的格式。接着可以在外部程序里加载它们供后续运算之需。同样地,最终得到的结果也可以按照相同的方式返回至 MATLAB 工作区以备进一步分析或可视化呈现。 #### 结果验证 最后一步是对所得解决方案的有效性和准确性做出评估。可以通过比较理论预期同实验测量间的吻合程度来进行初步判断。如果一切正常的话,应该能够观察到两者之间存在良好的一致性关系。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

JoannaJuanCV

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值