【ZhangQian AI模型部署】目标检测、SAM、3D目标检测、旋转目标检测、人脸检测、检测分割、关键点、分割、深度估计、车牌识别、车道线识别

  在模型部署落地(主要部署到rk3588)折腾了这么多年,把这些年折腾过的模型整理了一下,所有的流程说明、代码模型都完全开放的,欢迎交流学习。有的是为了项目、有的是为了学习、还有的是为了找点事做、有的完全是为了安抚内心的焦虑与迷茫,无论出于什么原因都在继续写着。遇到难啃的部署过程也会有无数次想要放弃的念头(毕竟很多是要工作之余去做),有的在部署过程不断思考如何优化速度、如何简化部署难度,经常是念念不忘。后续还会有项目、还会有学习、还会有无聊的时间,也依旧会有焦虑与迷茫,搞部署、写博客也还在路上…

1)点云

3D 目标检测

【PointPillars 3D目标检测 部署 onnx、TensorRT】

2)图像

目标检测

【yolov12 部署 rknn、C++】

【yolov11 部署 rknn、C++ 的 7 种部署方法】

【RT-DETR-v2 部署C++、TensorRT】

【yolov11 部署 rknn、C++、TensorRT(cuda和cpu两个版本后处理实现)】

【yolov10 部署 rknn、地平线、tensorRT、C++】

【yolo world 部署 rknn、地平线、tensorRT、C++】

【yolov9 部署 rknn、地平线、tensorRT、C++】

【yolov8 部署 rknn、地平线、tensorRT、C++】

【yolov7 部署 rknn、地平线、tensorRT】

【yolov6 部署rknn、地平线、tensorRT、caffe】

【yolov5 部署 rknn、地平线、tensorRT、caffe】

【DETR 部署 tensorRT、C++】

【SSD 部署 caffe、tensorRT】

【yolox 部署 caffe、tensorRT】

【CenterNet 部署 rknn、地平线、tensorRT、C++】

【FCOS 部署 onnx】

Segment Anything

【FastSAM 部署 onnx、rknn、C++】

3D 目标检测

【Monodle centernet3d 部署 rknn、地平线、tensorRT】

旋转目标检测

【yolov8obb 旋转目标检测部署 rknn、地平线、tensorRT、C++】

人脸检测

【RFB-SSD人脸检测部署caffe、onnx、tensorRT】

检测分割

【yolop 部署rknn、地平线、tensorRT】

【yolov8seg 部署 rknn、地平线、tensorRT、C++】

关键点

【yolov8pose 部署 rknn、地平线、tensorRT、C++】

【车牌回归部署 caffe、onnx、tensorRT】

分割(车道线、路面)

【DeepLabV3 路面分割部署 onnx、tensorRT】

【UNet 多车道线、线类别识别部署 onnx、rknn、地平线、tensorRT、C++】

【UNet 路面分割部署caffe、onnx、tensorRT】

深度估计

【MiDaS 单目深度估计 部署 onnx、rknn、C++】

车牌识别

【LPRNet 车牌识别部署 onnx、rknn、C++】

其它(车道线识别)

【Ultra-Fast-Lane 车道线识别部署caffe、onnx、horizon、rknn】

板端模型转换工具链

【瑞芯微 RKNN-Toolkit2 工具链】
【地平线 Horizon 工具链】

github主页

【代码仓目录】

【优质项目推荐】 1、品质保证:项目代码均经过严格测试,确保功能稳定且运行ok。您可以放心下载并立即投入使用,若遇到任何问题,随时欢迎您的反馈与交流。 2、适用广泛:无论您是计算机相关专业(如计算机科学、信息安全、数据科学、人工智能、通信、物联网、自动化、电子信息等)的在校学生、专业老师,还是企业员工,都适用。 3、多用途价值:该项目不仅具有很高的学习借鉴价值,对于初学者来说,是入门进阶的绝佳选择;当然也可以直接用于 毕业设计、课程设计、期末大作业或项目初期立项演示等。 3、开放创新:如果您有一定基础,且热爱探索钻研,那该项目代码更是您发挥创意、实现新功能的起点。可以基于此代码进行修改、扩展,创造出属于自己的独特应用。 欢迎下载使用优质资源!欢迎交流学习,欢迎借鉴引用,共同探索编程的无穷魅力! 基于C++实现yolov8pose算法移植部署瑞芯微rk3568嵌入式开发板项目源码+实验说明.zip 编译和运行 1)编译 ``` cd examples/rknn_yolov8pose_demo_open bash build-linux_RK3588.sh ``` 2)运行 ``` cd install/rknn_yolov8pose_demo_Linux ./rknn_yolov8pose_demo ``` 注意:修改模型、测试图像、保存图像的路径,修改文件为src下的main.cc ``` int main(int argc, char **argv) { char model_path[256] = "/home/zhangqian/rknn/examples/rknn_yolov8pose_demo_open/model/RK3588/yolov8pos_relu_zq.rknn"; char image_path[256] = "/home/zhangqian/rknn/examples/rknn_yolov8pose_demo_open/test.jpg"; char save_image_path[256] = "/home/zhangqian/rknn/examples/rknn_yolov8pose_demo_open/test_result.jpg"; detect(model_path, image_path, save_image_path); return 0; } ``` # 板端测试效果 冒号“:”前的数子是coco的80类对应的类别,后面的浮点数是目标得分。(类别:得分) 说明:推理测试预处理没有考虑等比率缩放,激活函数 SiLU 用 Relu 进行了替换。由于使用的数据不多,效果并不是很好,仅供测试流程用。 把板端模型推理和后处理时耗也附上,供参考,使用的芯片rk3588,输入分辨率640x640。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值