基于地图的激光雷达定位算法汇总(含开源代码)

本文介绍了几种开源的激光雷达定位框架,包括基于点云的蒙特卡洛定位mcl_3dl,适合动态场景的长期定位系统ROLL,结合LOAM和SegMap的LOL,以及无需特征匹配的直接激光定位DLL。这些方法针对不同的应用场景和挑战,提供了从局部到全局的精准定位解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在机器人应用开发过程中,通常需要先对环境进行建图处理,然后基于建好的地图进行定位与导航,那一种思路就是对SLAM算法进行修改,用来做定位;还有就是重新设计定位框架啦,当然定位中点云与地图的匹配过程与SLAM中还是基本一致的。

下面列举几种开源的定位框架,大家做参考:

一、 mcl_3dl

基于点云地图的蒙特卡洛定位,可提供3自由度或6自由度的定位信息。目前适用于差分底盘。

可以选择使用或不使用odometry及IMU。

如果要执行全局定位,可执行

rosservice call /global_localization


二、 ROLL:A real-time, robust LiDAR-inertial localization system

 这个工作还是挺有意思的,是一个long-term的激光定位方法,适用于动态场景的定位。

 首先,提出了一个基于LOAM的全局matching的模块,包含temporary mapping,能够有效防止在场景发生比较大变化或者地图未覆盖的定位失败问题。当检测匹配可靠时,建好的temporary map就会被合并到全局地图。

其次,提出了一个Pose Fusion模块,对LIO的位姿和global matching的位姿进行一致性检查,并输出融合后的位姿。

详细解读见另一篇文章ROLL: Long-Term Robust LiDAR-based Localization With Temporary Mapping in Changing Environments_zllz0907的博客-CSDN博客

论文:IROS 2022ROLL: Long-Term Robust LiDAR-based Localization With Temporary Mapping in Changing Environments
三、 LOL: Lidar-only Odometry and Localization in 3D point cloud maps

1. 基于LOAM和SegMap两种sota算法,提出了一种纯激光的里程计和定位系统。为了纠正LOAM里程计的累积漂移,应用SegMap位置识别方法来检测在线3D点云和先前离线地图之间的几何相似位置。

2. 基于RANSAC进行几何验证,以减少在线点云与离线地图之间的虚假匹配数量;

3. 细粒度的ICP对齐,以在检测到良好匹配时优化重新定位的准确性。

论文:

LOL: Lidar-only Odometry and Localization in 3D point cloud maps

四、DLL: Direct Lidar Localization
 

本身是为无人机开发。DLL实现了基于点云到地图的配准,基于点与地图之间的距离的非线性优化,因此不需要特征,也不需要点对应。给定初始姿态,该方法能够通过从里程计预测姿态进行细化来跟踪机器人的姿态。该方法宣称比蒙特卡罗定位方法表现更好,并且达到了与其他基于优化的方法相当的精度,但速度快一个数量级。该方法在里程计有误差的情况下也很稳健。

虽然建议使用里程计系统进行快速和准确的定位,但如果机器人移动平稳,DLL在没有里程计信息的情况下也能表现良好。

论文:IROS 2021

DLL: Direct LIDAR Localization. A map-based localization approach for aerial robots

超声波雷达是利用声波在空气中传播的原理,当声波遇到障碍物时会部分折回,超声波雷达可以接收这些折回的声波,并通过信号处理得到障碍物的距离和位置信息。超声波雷达可以通过测量声波的飞行时间(TOF)来计算障碍物的距离,也可以通过几个探头的自发自收和三角定位算法将距离转化为坐标。此外,超声波雷达还可以通过学习回波的特性来对典型物体进行高低判断和分类学习。因此,超声波雷达主要用于提供近距离感知信息。\[2\] 三角定位算法是一种通过多个探头的自发自收和三角定位来确定目标物体的位置的算法。在车辆停车位检测中,首先车辆通过超声波传感器进行第一次停车位检测,确定停车位的大概位置。然后,在车辆倒车入库的过程中,通过前车车头边沿的重新检测和后车右前角的检测,使用尾部超声波进行后车边沿数据的采集。当车辆离后车距离达到一定范围时,停止车辆并使用三角定位算法进行后车边沿数据的计算,从而实现垂直车位的二次定位。\[3\] #### 引用[.reference_title] - *1* *3* [基于超声波的库位重定位算法](https://blog.csdn.net/zghforever/article/details/90172815)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [自动驾驶TPM技术杂谈 ———— 超声波雷达系统测距](https://blog.csdn.net/qq_42957717/article/details/128332948)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值