这篇文章的标题是《Mobile ALOHA: Learning Bimanual Mobile Manipulation with Low-Cost Whole-Body Teleoperation》,作者是Zipeng Fu、Tony Z. Zhao和Chelsea Finn,来自斯坦福大学。
一、主要贡献
Mobile ALOHA是一个低成本的移动操作系统,该系统支持双手操作和全身遥操作。系统总成本为32,000美元,包括机载电源和计算能力。
文章中提到了通过模仿学习从人类演示中获取的机器人性能表现,但大多数结果集中在桌面操作上,缺乏执行通用任务所需的移动性和灵活性。本文开发了一个系统,用于模仿需要双手和全身控制的移动操作任务。它通过移动基座和全身遥操作界面扩展了ALOHA系统。使用Mobile ALOHA收集的数据,然后进行监督行为克隆,并发现与现有的静态ALOHA数据集共同训练可以提高移动操作任务的性能。通过为每项任务提供50个演示,共同训练可以将成功率提高至90%,使Mobile ALOHA能够自主完成复杂的移动操作任务,如炒虾和上菜、打开双门墙柜以存放重型烹饪锅具、呼叫并进入电梯,以及使用厨房水龙头轻轻冲洗使用过的平底锅。
文章还讨论了移动操作系统的设计考虑因素,