7 Brown运动

7.1 基本概念与性质

  • 粒子在直线上随机游
  • 单位时间向左向右一单位
  • 现加速,在越来越小的时间间隔中走越来越小 Δ x \Delta x Δx
  • 若以正确方式趋于极限,就得Brown
  • 令每隔 Δ t \Delta t Δt时间等概率向左或向右移 Δ x \Delta x Δx
  • X ( t ) X(t) X(t):粒子的位置,则
    X ( t ) = Δ x ( X 1 + . . . + X [ t / Δ t ] ) (7.1.1) X(t)=\Delta x(X_1+...+X_{[t/\Delta t]})\tag{7.1.1} X(t)=Δx(X1+...+X[t/Δt])(7.1.1)
  • X i X_i Xi
  • 1,右
  • -1,左
  • X i X_i Xi相互独立
  • 概率各1/2

  • E X i = 0 EX_i=0 EXi=0, v a r ( X i ) = E ( X i 2 ) = 1 var(X_i)=E(X_i^2)=1 var(Xi)=E(Xi2)=1
  • E [ X ( t ) ] = 0 E[X(t)]=0 E[X(t)]=0
  • v a r [ X ( t ) ] = ( Δ x ) 2 ( t / Δ t ) var[X(t)]=(\Delta x)^2(t/\Delta t) var[X(t)]=(Δx)2(t/Δt)
  • 现令 Δ x \Delta x Δx Δ t \Delta t Δt趋于零
  • 并使极限有意义
  • Δ x = Δ t \Delta x=\Delta t Δx=Δt,令 Δ → 0 \Delta \to 0 Δ0,则 v a r [ X ( t ) ] → 0 var[X(t)]\to 0 var[X(t)]0,从而 X ( t ) = 0 X(t)=0 X(t)=0,a.s…
  • 如果 Δ x = Δ t 3 \Delta x=\Delta t^3 Δx=Δt3,则 v a r [ X ( t ) ] → ∞ var[X(t)]\to\infty var[X(t)]
    • 不合理,粒子的运动是连续的,不可能短时间远离出发点
  • so设: Δ x = σ Δ t \Delta x=\sigma \sqrt{\Delta t} Δx=σΔt σ \sigma σ为某个正常数
  • 从上面的讨论可见,当 Δ → 0 \Delta \to 0 Δ0时, E [ X ( t ) ] = 0 E[X(t)]=0 E[X(t)]=0, v a r [ X ( t ) ] → σ 2 t var[X(t)]\to \sigma^2t var[X(t)]σ2t

  • 这一极限过程的直观性质
  • 均值0,方差 σ 2 t \sigma^2t σ2t正态
  • 随机游动的值在不相重叠的时间区间中的变化是独立的
    • { X ( t ) , t ≥ 0 } \{X(t),t≥0\} {X(t),t0}有独增
  • 随机游动在任一时间区间中的位置变化的分布只依赖于区间的长度,可见
    • { X ( t ) , t ≥ 0 } \{X(t),t≥0\} {X(t),t0}有平稳增量

  • Brown运动严格定义(定义7.1)
  • { X ( t ) , t ≥ 0 } \{X(t),t\ge 0\} {X(t),t0}
    • X ( 0 ) = 0 X(0)=0 X(0)=0
    • 独立的平稳增量
    • X ( t ) ∼ N ( 0 , σ 2 t ) X(t)\sim N(0,\sigma^2t) X(t)N(0,σ2t)
  • 标准 Brown运动
  • 不失一般性,只考标准

  • 这一定义在应用中不方便
  • 给出下面的性质作为Brown运动的等价定义

  • 性质7.1
  • B ( t ) − B ( s ) ∼ N ( 0 , t − s ) B(t)-B(s)\sim N(0,t-s) B(t)B(s)N(0,ts)
  • 独增
  • B ( t ) , t ≥ 0 B(t),t\ge 0 B(t),t0 t t t连续

  • 注7.1
  • 性质7.1没假定 B ( 0 ) = 0 B(0)=0 B(0)=0,称为始于 x x x的Brown
    • 有时为强调起始点,记为 { B x ( t ) } \{B^x(t)\} {Bx(t)}
    • 定义7.1指的就是始于0
  • 易见
    B x ( t ) − x = B 0 ( t ) (7.1.2) B^x(t)-x=B^0(t)\tag{7.1.2} Bx(t)x=B0(t)(7.1.2)
  • 式(7.1.2)按照下面的定义7.2称为 Brown运动的空间齐次性.
  • 此性质也说明, B x ( t ) B^x(t) Bx(t) x + B 0 ( t ) x+B^0(t) x+B0(t)是相同的,
  • 只需研究始于0的Brown就行
  • 如不加说明,Brown就指始于0的

  • 定义7.2
  • 如果它的有限维分布是空间平移不变的
    P { X ( t 1 ) ≤ x 1 , X ( t 2 ) ≤ x 2 , . . . , X ( t n ) ≤ x n ∣ X ( 0 ) = 0 } P\{X(t_1)\le x_1,X(t_2)\le x_2,...,X(t_n)\le x_n|X(0)=0\} P{X(t1)x1,X(t2)x2,...,X(tn)xnX(0)=0}
    = P { X ( t 1 ) ≤ x 1 + x , X ( t 2 ) ≤ x 2 + x , . . . , X ( t n ) ≤ x n + x ∣ X ( 0 ) = x } =P\{X(t_1)\le x_1+x,X(t_2)\le x_2+x,...,X(t_n)\le x_n+x|X(0)=x\} =P{X(t1)x1+x,X(t2)x2+x,...,X(tn)xn+xX(0)=x}
  • 称此过程为空间齐次

  • 例7.1

在这里插入图片描述

在这里插入图片描述

  • 利用独增及转移概率密度,可计算任意有限维分布

在这里插入图片描述

  • 定义7.3
  • Brown的二次变差 [ B , B ] ( t ) [B,B](t) [B,B](t)
  • { t i n } i = 0 n \{t_i^n\}_{i=0}^n {tin}i=0n遍取 [ 0 , t ] [0,t] [0,t]的分割,且 δ n = max ⁡ 0 ≤ i ≤ n − 1 ( t i + 1 n − t i n ) → 0 \delta_n=\max\limits_{0\le i\le n-1}(t_{i+1}^n-t_i^n)\to 0 δn=0in1max(ti+1ntin)0时依概率收敛意义下的极限
    [ B , B ] ( t ) = [ B , B ] ( [ 0 , t ] ) = [B,B](t)=[B,B]([0,t])= [B,B](t)=[B,B]([0,t])=
    lim ⁡ δ n → 0 ∑ i = 0 n − 1 ∣ B ( t i + 1 n ) − B ( t i n ) ∣ 2 (7.1.5) \lim_{\delta_n\to 0}\sum_{i=0}^{n-1}|B(t_{i+1}^n)-B(t_i^n)|^2\tag{7.1.5} δn0limi=0n1B(ti+1n)B(tin)2(7.1.5)

Brown路径性质

  • 0 0 0 T T T对Brown的次观察称Brown [ 0 , T ] [0,T] [0,T]上的一路径或实现
    • t t t的函数
  • Brown几乎所有路径 B ( t ) 0 ≤ t ≤ T B(t)0\le t\le T B(t)0tT
    • 是t的连续
    • 任何区间(无论多小)都不单调
    • 任何点都不可微
    • 任何区间(无论多小)上都是无限变差的;
    • [ 0 , t ] [0,t] [0,t]上的二次变差等于t.
  • 1~3不难,4可从5得到(作习题)

定理7.1 [ B , B ] ( t ) = t [B,B](t)=t [B,B](t)=t

we have write here !!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

fgh431

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值