7.1 基本概念与性质
- 粒子在直线上随机游
- 单位时间向左向右一单位
- 现加速,在越来越小的时间间隔中走越来越小 Δ x \Delta x Δx
- 若以正确方式趋于极限,就得Brown
- 令每隔 Δ t \Delta t Δt时间等概率向左或向右移 Δ x \Delta x Δx
-
X
(
t
)
X(t)
X(t):粒子的位置,则
X ( t ) = Δ x ( X 1 + . . . + X [ t / Δ t ] ) (7.1.1) X(t)=\Delta x(X_1+...+X_{[t/\Delta t]})\tag{7.1.1} X(t)=Δx(X1+...+X[t/Δt])(7.1.1) - 令 X i X_i Xi
- 1,右
- -1,左
- X i X_i Xi相互独立
- 概率各1/2
- E X i = 0 EX_i=0 EXi=0, v a r ( X i ) = E ( X i 2 ) = 1 var(X_i)=E(X_i^2)=1 var(Xi)=E(Xi2)=1
- 有 E [ X ( t ) ] = 0 E[X(t)]=0 E[X(t)]=0
- v a r [ X ( t ) ] = ( Δ x ) 2 ( t / Δ t ) var[X(t)]=(\Delta x)^2(t/\Delta t) var[X(t)]=(Δx)2(t/Δt)
- 现令 Δ x \Delta x Δx和 Δ t \Delta t Δt趋于零
- 并使极限有意义
- 取 Δ x = Δ t \Delta x=\Delta t Δx=Δt,令 Δ → 0 \Delta \to 0 Δ→0,则 v a r [ X ( t ) ] → 0 var[X(t)]\to 0 var[X(t)]→0,从而 X ( t ) = 0 X(t)=0 X(t)=0,a.s…
- 如果
Δ
x
=
Δ
t
3
\Delta x=\Delta t^3
Δx=Δt3,则
v
a
r
[
X
(
t
)
]
→
∞
var[X(t)]\to\infty
var[X(t)]→∞
- 不合理,粒子的运动是连续的,不可能短时间远离出发点
- so设: Δ x = σ Δ t \Delta x=\sigma \sqrt{\Delta t} Δx=σΔt。 σ \sigma σ为某个正常数
- 从上面的讨论可见,当 Δ → 0 \Delta \to 0 Δ→0时, E [ X ( t ) ] = 0 E[X(t)]=0 E[X(t)]=0, v a r [ X ( t ) ] → σ 2 t var[X(t)]\to \sigma^2t var[X(t)]→σ2t
- 这一极限过程的直观性质
- 均值0,方差 σ 2 t \sigma^2t σ2t正态
- 随机游动的值在不相重叠的时间区间中的变化是独立的
- { X ( t ) , t ≥ 0 } \{X(t),t≥0\} {X(t),t≥0}有独增
- 随机游动在任一时间区间中的位置变化的分布只依赖于区间的长度,可见
- { X ( t ) , t ≥ 0 } \{X(t),t≥0\} {X(t),t≥0}有平稳增量
- Brown运动严格定义(定义7.1)
-
{
X
(
t
)
,
t
≥
0
}
\{X(t),t\ge 0\}
{X(t),t≥0}
- X ( 0 ) = 0 X(0)=0 X(0)=0
- 独立的平稳增量
- X ( t ) ∼ N ( 0 , σ 2 t ) X(t)\sim N(0,\sigma^2t) X(t)∼N(0,σ2t)
- 标准 Brown运动
- 不失一般性,只考标准
- 这一定义在应用中不方便
- 给出下面的性质作为Brown运动的等价定义
- 性质7.1
- B ( t ) − B ( s ) ∼ N ( 0 , t − s ) B(t)-B(s)\sim N(0,t-s) B(t)−B(s)∼N(0,t−s)
- 独增
- B ( t ) , t ≥ 0 B(t),t\ge 0 B(t),t≥0是 t t t连续
- 注7.1
- 性质7.1没假定
B
(
0
)
=
0
B(0)=0
B(0)=0,称为始于
x
x
x的Brown
- 有时为强调起始点,记为 { B x ( t ) } \{B^x(t)\} {Bx(t)}
- 定义7.1指的就是始于0
- 易见
B x ( t ) − x = B 0 ( t ) (7.1.2) B^x(t)-x=B^0(t)\tag{7.1.2} Bx(t)−x=B0(t)(7.1.2) - 式(7.1.2)按照下面的定义7.2称为 Brown运动的空间齐次性.
- 此性质也说明, B x ( t ) B^x(t) Bx(t)和 x + B 0 ( t ) x+B^0(t) x+B0(t)是相同的,
- 只需研究始于0的Brown就行
- 如不加说明,Brown就指始于0的
- 定义7.2
- 如果它的有限维分布是空间平移不变的
P { X ( t 1 ) ≤ x 1 , X ( t 2 ) ≤ x 2 , . . . , X ( t n ) ≤ x n ∣ X ( 0 ) = 0 } P\{X(t_1)\le x_1,X(t_2)\le x_2,...,X(t_n)\le x_n|X(0)=0\} P{X(t1)≤x1,X(t2)≤x2,...,X(tn)≤xn∣X(0)=0}
= P { X ( t 1 ) ≤ x 1 + x , X ( t 2 ) ≤ x 2 + x , . . . , X ( t n ) ≤ x n + x ∣ X ( 0 ) = x } =P\{X(t_1)\le x_1+x,X(t_2)\le x_2+x,...,X(t_n)\le x_n+x|X(0)=x\} =P{X(t1)≤x1+x,X(t2)≤x2+x,...,X(tn)≤xn+x∣X(0)=x} - 称此过程为空间齐次
- 例7.1
- 利用独增及转移概率密度,可计算任意有限维分布
- 定义7.3
- Brown的二次变差 [ B , B ] ( t ) [B,B](t) [B,B](t)
-
{
t
i
n
}
i
=
0
n
\{t_i^n\}_{i=0}^n
{tin}i=0n遍取
[
0
,
t
]
[0,t]
[0,t]的分割,且
δ
n
=
max
0
≤
i
≤
n
−
1
(
t
i
+
1
n
−
t
i
n
)
→
0
\delta_n=\max\limits_{0\le i\le n-1}(t_{i+1}^n-t_i^n)\to 0
δn=0≤i≤n−1max(ti+1n−tin)→0时依概率收敛意义下的极限
[ B , B ] ( t ) = [ B , B ] ( [ 0 , t ] ) = [B,B](t)=[B,B]([0,t])= [B,B](t)=[B,B]([0,t])=
lim δ n → 0 ∑ i = 0 n − 1 ∣ B ( t i + 1 n ) − B ( t i n ) ∣ 2 (7.1.5) \lim_{\delta_n\to 0}\sum_{i=0}^{n-1}|B(t_{i+1}^n)-B(t_i^n)|^2\tag{7.1.5} δn→0limi=0∑n−1∣B(ti+1n)−B(tin)∣2(7.1.5)
Brown路径性质
- 从
0
0
0到
T
T
T对Brown的次观察称Brown
[
0
,
T
]
[0,T]
[0,T]上的一路径或实现
- 是 t t t的函数
- Brown几乎所有路径
B
(
t
)
0
≤
t
≤
T
B(t)0\le t\le T
B(t)0≤t≤T都
- 是t的连续
- 任何区间(无论多小)都不单调
- 任何点都不可微
- 任何区间(无论多小)上都是无限变差的;
- [ 0 , t ] [0,t] [0,t]上的二次变差等于t.
- 1~3不难,4可从5得到(作习题)
定理7.1 [ B , B ] ( t ) = t [B,B](t)=t [B,B](t)=t
we have write here !!!