高博14讲--第三讲 三维空间刚体运动

13 篇文章 3 订阅

旋转矩阵

点和向量、坐标系

  刚体是指在运动中和受力作用后,形状和大小不变,而且内部各点的相对位置不变的物体。

  • 刚体,不光有位置,还有自身的姿态。
  • 相机可以看作三维空间中的刚体,于是,位置是指相机在空间中的哪个地方,而姿态是指相机的朝向。

    向量的内积: 对于   a , b ∈ R 3 \ a,b∈R^3  a,bR3,内积为: a ⋅ b = a T b = Σ i = 1 3 a i b i = ∣ a ∣ ∣ b ∣ c o s ( a , b ) a·b=a^Tb=\Sigma_{i=1}^3{a_ib_i}=|a||b|cos(a,b) ab=aTb=Σi=13aibi=abcos(a,b)
    内积描述了向量间的投影关系


    向量的外积:
    在这里插入图片描述上式中,第一个等号后面为行列式,第三个等号后面的式子,把向量a写成矩阵的形式。

    向量的外积,仍是一个向量,外积的方向垂直于这两个向量,大小为   ∣ a ∣ ∣ b ∣ s i n a ( a , b ) \ |a||b|sina(a,b)  absina(a,b),是两个向量张成的四边形的有向面积。

    引入了   ⋀ \ ^{\bigwedge }   符号,把   a \ a  a 写成一个矩阵,   ⋀ \ ^{\bigwedge }   是反对称符号,   a ⋀ \ a^{\bigwedge }  a 是一个3×3反对称矩阵。 向量   b \ b  b 是3×1的矩阵,所以,它们可以写成相乘的形式。即:


    把向量的外积   a × b \ a{\times }b  a×b写成矩阵与向量的乘法   a ⋀ b \ a^{\bigwedge }b  ab

    外积只对三维向量存在定义,用外积表示向量的旋转

    为什么外积可以表示旋转呢?

      两个不平行的向量   a , b \ a,b  ab,从   a \ a  a   b \ b  b如何进行旋转,在右手法则下,用右手的4个指头从   a \ a  a转向   b \ b  b,大拇指朝向就是旋转向量的方向,事实上也是   a × b \ a×b  a×b的方向。 通过这种方式,构造了从   a \ a  a   b \ b  b的一个旋转向量。
     所以,   a × b \ a×b  a×b这个外积可以表示向量从   a \ a  a   b \ b  b的旋转。

在这里插入图片描述

坐标系间的欧式变换

  坐标系之间的变换由一个旋转和一个平移两部分组成。

  欧式变换: 同一个向量在各个坐标系下的长度和夹角都不会发生变化的变换。

  设某个单位正交基   ( e 1 , e 2 , e 3 ) \ (e_1,e_2,e_3)  (e1,e2,e3)经过一次旋转,变成了   ( e 1 ′ , e 2 ′ ​ , e 3 ′ ) \ (e_1^{′},e_2^{′}​,e_3^{′})  (e1,e2,e3)。对于同一个向量   a \ a  a(注意该向量并没有随着坐标系的旋转而发生运动),它在两个坐标系下的坐标为   [ a 1 , a 2 , a 3 ] T \ [a_1,a_2,a_3]^T  [a1,a2,a3]T   [ a 1 ′ , a 2 ′ , a 3 ′ ] T \ [a_1^{′},a_2^{′},a_3^{′}]^T  [a1,a2,a3]T。根据坐标的定义,有:
在这里插入图片描述
 两边同时左乘   [ e 1 T e 2 T e 3 T ] \ \left[ \begin{matrix} e_1^{T} \\ e_2^{T}\\ e_3^{T} \end{matrix} \right]  e1Te2Te3T,左边的系数就变成单位矩阵,所以
在这里插入图片描述     R \ R  R被称为旋转矩阵:旋转矩阵由两组基之间的内积组成,刻画了旋转前后同一个向量的坐标变换关系。


旋转矩阵的性质:

  1. 行列式为1
  2. 正交阵
  3. 对于同一个旋转变化,对应唯一的旋转矩阵
  4. 旋转矩阵的充要条件:行列式为 1 的正交矩阵
  5. 集合定义:   S O ( n ) = { R ∈ R n × n ∣ R R T = I , d e t ( R ) = 1 } . \ SO(n)=\{R∈R^{n×n}|RR^T=I,det(R)=1\}.  SO(n)={RRn×nRRT=I,det(R)=1}.

  旋转矩阵为正交阵,它的逆(即转置)描述了一个相反的旋转:
在这里插入图片描述      世界坐标系中的向量   a \ a  a,经过一次旋转和一次平移后,得到   a ′ \ a^{′}  a,设旋转矩阵为   R \ R  R,平移向量为   t \ t  t ,则
在这里插入图片描述

变换矩阵与齐次坐标

  齐次坐标: 射影几何里的概念,把一个三维向量的末尾添加 1,变成了四维向量,称为齐次坐标。

  变换矩阵   T \ T  T:4 × 4矩阵,左上角是 3 × 3 旋转矩阵   R \ R  R,下面是3 × 1零向量,右面是1 × 3平移向量   t \ t  t ,右下角是1。
在这里插入图片描述

  在齐次坐标中,某个点   x \ x  x 的每个分量同乘一个非零常数   k \ k  k 后,仍然表示的是同一个点

  因此,一个点的具体坐标值不是唯一的。 当最后一项不为零时,我们总可以把所有坐标除以最后一项,强制最后一项为 1,从而得到一个点唯一的坐标表示。忽略掉最后一项,这个点的坐标和欧氏空间就是一样:
在这里插入图片描述  依靠齐次坐标和变换矩阵,两次变换的累加就可以有很好的形式:
在这里插入图片描述  变换矩阵   T \ T  T具有特别的结果:左上角为旋转矩阵,右侧为平移向量,左下角为 0 向量,右下角为 1。这种矩阵又称为特殊欧式群
在这里插入图片描述

  变换矩阵的逆,表示反向变换:
在这里插入图片描述

旋转向量和欧拉角

旋转向量

  矩阵表示的缺点: 旋转矩阵有9个量,但只有3个自由度;变换矩阵由16个量,但只有6个自由度,表达冗余,浪费空间。

  任意旋转都可以用一个旋转轴和一个旋转角来刻画。
  旋转向量(或轴角): 方向与旋转轴一致,长度等于旋转角的向量。
  旋转向量有3个量和3个自由度,使用一个旋转向量和一个平移向量即可表达一次变换。

  旋转向量和旋转矩阵的转换:
    1. 旋转向量==>旋转矩阵:罗德里格斯公式
      设旋转轴向量(单位向量)   n \ n  n ,旋转角为   θ \ θ  θ ,则旋转向量为   θ n \ θn  θn,罗德里格斯公式如下:
在这里插入图片描述    2. 旋转矩阵==>旋转向量,公式如下:
在这里插入图片描述
   转轴   n \ n  n 是矩阵   R \ R  R 特征值 1 对应的特征向量,旋转轴经过旋转之后不变。

欧拉角

  欧拉角使用了三个分离的转角,把一个旋转分解成三次绕不同轴的旋转。
  欧拉角常使用“偏航-俯仰-滚转”(yaw-pitch-roll),等价于   Z Y X \ ZYX  ZYX 轴的旋转。使用   [ r , p , y ] T \ [r,p,y]^T  [r,p,y]T 这样一个三维的向量描述任意旋转,注意是先   y \ y  y,再   p \ p  p,再   r \ r  r

  欧拉角的万向锁问题:在俯仰角为   ± 9 0 ◦ \ ±90^◦  ±90时,第一次旋转与第三次旋转将使用同一个轴,使得系统丢失了一个自由度(由三次旋转变成了两次旋转),也被称为奇异性问题

  欧拉角的万向锁就是指,有两种方式可以到达相同的旋转效果。一种是绕三个轴各旋转一次,另一种就是绕两个轴各旋转一次,都能从相同的初始姿态到达,最后相同的姿态。

  在旋转过程中,数据会有误差存在,比如测定的旋转为   9 0 ◦ \ 90^◦  90,而实际旋转了   9 1 ◦ \ 91^◦  91.

  这里的旋转是按自身本体的坐标系进行旋转,即:当旋转体本身在旋转时,按照自身来建立坐标系,根据自身坐标系的   x \ x  x轴(或   y \ y  y轴,或   z \ z  z轴)进行一次旋转,在旋转之后,再按照当前位置,自身坐标系绕的   y \ y  y轴(或   z \ z  z轴,或   y \ y  y轴)进行一次旋转,在旋转之后,再按照当前位置,自身坐标系绕的   z \ z  z轴(或   x \ x  x轴,或   x \ x  x轴)进行一次旋转。


  理论上可以证明,只要我们想用三个实数来表达三维旋转时,都会不可避免地碰到奇异性问题。
  由于奇异性问题,欧拉角不适于插值和迭代,往往只用于人机交互中,也很少出现在slam中。
在这里插入图片描述

四元数

四元数的定义

  没有不带奇异性的三维向量描述方式(旋转向量、欧拉角……)
  四元数是扩展的复数,由一个实部三个虚部构成,它是紧凑的没有歧义性

在这里插入图片描述     虚部满足如下关系式:
在这里插入图片描述
  四元数还可以表示成如下表达式:
在这里插入图片描述        s \ s  s 称为四元数的实部,而   v \ v  v 称为它的虚部。如果一个四元数虚部为 0,称之为实四元数。反之,若它的实部为 0,称之为虚四元数。

  用单位四元数表示三维空间中任意一个旋转。设某个旋转是绕单位向量   n = [ n x , n y , n z ] T \ n=[nx,ny,nz]^T  n=[nx,ny,nz]T进行了角度为   θ \ θ  θ 的旋转,那么这个旋转的四元数形式为:
在这里插入图片描述        θ \ θ  θ 加上   2 π \ 2π  2π,得到一个相同的旋转,但此时对应的四元数变成了   − q \ -q  q
  在四元数中, 任意的旋转都可以由两个互为相反数的四元数表示。
  取   θ \ θ  θ   0 \ 0  0,则得到一个没有任何旋转的实四元数: q 0 = [ ± 1 , 0 , 0 , 0 ] T q_0=[\pm1,0,0,0]^T q0=[±1,0,0,0]T

四元数的运算

  四元数和负数一样,可进行一系列运算,如:四则运算、数乘、求逆、共轭。

  设两个四元数为   q a , q b \ q_a,q_b  qa,qb,它们的向量表示为   [ s a , v a ] , [ s b , v b ] \ [s_a,v_a],[s_b,v_b]  [sa,va],[sb,vb],或原始四元数表示为: q a = s a + x a i + y a j + z a k , q b = s b + x b i + y b j + z b k q_a=s_a+x_ai+y_aj+z_ak,q_b=s_b+x_bi+y_bj+z_bk qa=sa+xai+yaj+zakqb=sb+xbi+ybj+zbk

  1. 加减法:
    在这里插入图片描述
  2. 乘法:把   q a \ q_a  qa的每一项与   q b \ q_b  qb相乘,最后相加,按照实部和虚部分别整理

在这里插入图片描述
        用向量和内外积形式表示:
在这里插入图片描述
        在乘法定义下,两个实数的四元数乘积仍是实的,这与负数也是一致的。

        注意四元数乘法是不可交换的,除非   v a \ v_a  va​ 和   v b \ v_b  vb​ 在   R 3 \ R^3  R3 中共线,此时外积项为零。

  1. 共轭:把虚部取成相反数

在这里插入图片描述
        四元数共轭与其本身相乘,得到一个实四元数,其实部为模长的平方:
在这里插入图片描述

  1. 模长 :各个部系数平方和开根号
    在这里插入图片描述        两个四元数乘积的模等于模的乘积,对于单位四元数,则意味着单位四元数乘积仍为单位四元数:
    在这里插入图片描述
  2. 逆:
    在这里插入图片描述
            四元数和自己的逆的乘积为实四元数   1 \ 1  1
    在这里插入图片描述
            如果   q \ q  q为单位四元数,其逆和共轭就是同一个量。

            乘积取逆等于交换顺序取逆的乘积:
    在这里插入图片描述
  3. 数乘和点乘:
            与向量相似,四元数可以与数相乘:
    在这里插入图片描述
            点乘是指,两个四元数每个位置上的数值分别相乘:
    在这里插入图片描述

用四元数表示旋转

  假设一个三维空间的点   p = [ x , y , z ] ∈ R 3 \ p=[x,y,z]∈R^3  p=[x,y,z]R3,以及一个由轴角   n , θ \ n,θ  n,θ指定的旋转。三维点   p \ p  p经过旋转之后变成   p ′ \ p^{′}  p
  用矩阵描述,则有   p ′ = R p \ p^{′}=Rp  p=Rp
  把这个三维空间的点用虚四元数描述:
在这里插入图片描述
  相当于把四元数的3个虚部与空间中的3个轴相对应。
  用四元数   q \ q  q表示这个旋转:
在这里插入图片描述
  则旋转后的向量为:   p ′ = q p q − 1 \ p^′=qpq^{−1}  p=qpq1
  计算结果的实部仍然为0,故为纯虚四元数。其虚部的3个分量表示旋转后   3 D \ 3D  3D点的坐标。

四元数到旋转矩阵的转换

  四元数==>旋转矩阵: 设四元数   q = q 0 + q 1 i + q 2 j + q 3 k \ q=q_0+q_1i+q_2j+q_3k  q=q0+q1i+q2j+q3k ,对应的旋转矩阵为:
在这里插入图片描述
  旋转矩阵==>四元数: 设矩阵为   R = m i j , i , j ∈ [ 1 , 2 , 3 ] \ R={m_{ij}},i,j∈[1,2,3]  R=mij,i,j[1,2,3],则对应的四元数为:
在这里插入图片描述
  由于   q \ q  q   − q \ -q  q表示同一个旋转,一个   R \ R  R 对应的四元数表示并不唯一。

相似、仿射、射影变换

在这里插入图片描述

  • (a)相似变换: 圆被影像为圆,方砖被影像为正方形。形状不变,只改变了图像的大小。
  • (b)仿射变换: 圆被影像为椭圆,方砖被影像为平行四边形。平行不变性,在仿射变换之后,虽然原来的图形变样了,但原来平行的直线,仍然是平行的。
  • (c)射影变换: 平行世界的线被影像为聚线。近大远小,离摄像机近的方砖的图像比远的大。直线不变性,射影变换之后,原来的直线,仍然还是直线。

相似变换

  相似变换比欧氏变换多了一个自由度,它允许物体进行均匀的缩放,其矩阵如下:
在这里插入图片描述
    s \ s  s称为缩放因子,表示在对向量旋转之后,可以在   x , y , z \ x,y,z  x,y,z 三个坐标上进行均匀的缩放。
  由于含有缩放,相似变换后不再保持图形的面积不变。

仿射变换

  仿射变换也称正交投影,变换矩阵如下:
在这里插入图片描述
  仿射变换只要求 A 是一个可逆矩阵,而不必是正交矩阵。
  经过仿射变换之后,立方体就不再是方的了,但是各个面仍然是平行四边形。

射影变换

  摄影变换是最一般的变换,变换矩阵为:
在这里插入图片描述
  左上角为可逆矩阵   A \ A  A,右上角为平移   t \ t  t ,左下角为缩放$ a^T$。

  采用齐次坐标,当   v \ v  v≠0 时,对整个矩阵除以   v \ v  v 得到一个右下角为1的矩阵,否则得到右下角为0的矩阵。

    2 D \ 2D  2D 的射影变换一共有 8 个自由度,   3 D \ 3D  3D 则共有 15 个自由度。

在这里插入图片描述
参考:https://blog.csdn.net/weixin_40883049/article/details/86567439#311__3
          https://blog.csdn.net/qq_35604674/article/details/88606959

  • 2
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值