PCL中的特征区别 3DSC和SHOT,

the USC descriptor is basically the 3D Shape Context descriptor (as
described in Frome et al. , "Recognizing Objects in Range Data Using
Regional Point Descriptors",

where a different definition for the local Reference Frame of each
feature being described is used. As explained in the original 3DSC
paper,  due to the ambiguity in orienting their local RF, they need L
different rotations for each point, leading to L different descriptors
(L=12 in their experiments). In USC, the same description method is used
but relying on a local RF which is unique, thus it leads only to one
description for each point.

Then, your question is probably what is the difference between the
description method of 3DSC/USC and that of SHOT (without texture). The
common aspect is that they both place an oriented 3D grid around the
feature point. Then, 3DSC/USC accumulates the number of points falling
in each spherical sector based on their 3D coordinates: hence, it is
basically a 3D histogram. Each inserted point doesn't count 1 in the
histogram, but it is weighted based on the local point density around it
and on the volume of the spherical sector it falls in. Instead, SHOT
computes an histogram for each grid sector: this histogram accumulates
the angle between the feature point and all points falling in that
particular sector. Quadrilinear interpolation is then used to smooth out
the sampling effect of the histogram. Then, all computed histograms (one
for each sector) are juxtaposed to form the final descriptor vector. 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值