YOLOv8改进 加入随机化注意力权重的注意力机制Shuffle Attention 即插即用

一、SA-Net论文

论文地址:2102.00240.pdf (arxiv.org)

二、 Shuffle Attention结构

    Shuffle Attention注意力机制的运行逻辑依次是:输入:给定一个输入序列,例如一个句子,经过词嵌入或编码器得到一个高维表示。线性变换:通过一个线性变换将输入序列映射到一个低维向量空间,这个过程可以提供更多的语义信息。随机打乱:将低维向量随机打乱顺序,以打破原始输入序列的顺序模式。分组:将打乱顺序的低维向量分成多个小组,每个小组包含一定数量的向量。自注意力计算:对于每个小组,使用自注意力机制计算出每个向量与其他向量之间的注意力权重。汇总:将每个小组内的向量根据注意力权重进行加权汇总,得到小组内的表示。重组:将每个小组内的表示重新组合成一个新的序列。反映射:通过一个反映射函数将新的序列映射回原始的高维向量空间。输出:得到一个新的表示,可以用于后续的任务,例如分类或生成。核心思想是通过随机打乱和分组来增强输入序列的多样性,从而提高自注意力机制的性能。

三、代码实现

1、在官方的yolov8包中ultralytics\ultralytics\nn\modules\__init__.py文件中的from .conv import和__all__中加入注意力机制ShuffleAttention。

2、在ultralytics\ultralytics\nn\modules\conv.py文件中上边__all__中同样添加

ShuffleAttention。

并在该conv.py文件下方加入ShuffleAttention的代码:

from torch.nn.parameter import Parameter
from torch.nn import init


#####     添加ShuffleAttention    #####
class ShuffleAttention(nn.Module):

    def __init__(self, channel=512, reduction=16, G=8):
        super().__init__()
        self.G = G
        self.channel = channel
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.gn = nn.GroupNorm(channel // (2 * G), channel // (2 * G))
        self.cweight = Parameter(torch.zeros(1, channel // (2 * G), 1, 1))
        self.cbias = Parameter(torch.ones(1, channel // (2 * G), 1, 1))
        self.sweight = Parameter(torch.zeros(1, channel // (2 * G), 1, 1))
        self.sbias = Parameter(torch.ones(1, channel // (2 * G), 1, 1))
        self.sigmoid = nn.Sigmoid()

    def init_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                init.kaiming_normal_(m.weight, mode='fan_out')
                if m.bias is not None:
                    init.constant_(m.bias, 0)
            elif isinstance(m, nn.BatchNorm2d):
                init.constant_(m.weight, 1)
                init.constant_(m.bias, 0)
            elif isinstance(m, nn.Linear):
                init.normal_(m.weight, std=0.001)
                if m.bias is not None:
                    init.constant_(m.bias, 0)

    @staticmethod
    def channel_shuffle(x, groups):
        b, c, h, w = x.shape
        x = x.reshape(b, groups, -1, h, w)
        x = x.permute(0, 2, 1, 3, 4)

        # flatten
        x = x.reshape(b, -1, h, w)

        return x

    def forward(self, x):
        b, c, h, w = x.size()
        # group into subfeatures
        x = x.view(b * self.G, -1, h, w)  # bs*G,c//G,h,w

        # channel_split
        x_0, x_1 = x.chunk(2, dim=1)  # bs*G,c//(2*G),h,w

        # channel attention
        x_channel = self.avg_pool(x_0)  # bs*G,c//(2*G),1,1
        x_channel = self.cweight * x_channel + self.cbias  # bs*G,c//(2*G),1,1
        x_channel = x_0 * self.sigmoid(x_channel)

        # spatial attention
        x_spatial = self.gn(x_1)  # bs*G,c//(2*G),h,w
        x_spatial = self.sweight * x_spatial + self.sbias  # bs*G,c//(2*G),h,w
        x_spatial = x_1 * self.sigmoid(x_spatial)  # bs*G,c//(2*G),h,w

        # concatenate along channel axis
        out = torch.cat([x_channel, x_spatial], dim=1)  # bs*G,c//G,h,w
        out = out.contiguous().view(b, -1, h, w)

        # channel shuffle
        out = self.channel_shuffle(out, 2)
        return out

3、在 ultralytics\ultralytics\nn\tasks.py文件中开头引入ShuffleAttention。

并在该文件 def parse_model模块中加入ShuffleAttention注意力机制代码:

 elif m in {ShuffleAttention}:
            c1, c2 = ch[f], args[0]
            if c2 != nc:  # if not output
                c2 = make_divisible(min(c2, max_channels) * width, 8)
            args = [c1, c2, *args[1:]]

4、创建yolov8+ShuffleAttention的yaml文件:

可根据自己的需求选择ShuffleAttention注意力机制插入的位置,本文以插入yolov8结构中最后一个C2f模块后边为例

# Ultralytics YOLO 🚀, GPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 2  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs

# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]]  # 9

# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 6], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f, [512]]  # 12

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 4], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [256]]  # 15 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 12], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f, [512]]  # 18 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 9], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f, [1024]]  # 21 (P5/32-large)
  - [-1, 3, ShuffleAttention, [1024]]

  - [[15, 18, 22], 1, Detect, [nc]]  # Detect(P3, P4, P5)

四、运行验证

可以看出模型结构中已将包含ShuffleAttention注意力机制。

Shuffle Attention (SA)是一种有效的注意力机制模块,用于改善深度神经网络的性能。SA模块将输入的特征映射划分为多个组,并使用Shuffle单元将通道注意和空间注意集成到每个组的一个块中。具体而言,SA首先将通道尺寸分组为多个子特征,然后并行处理它们。对于每个子特征,SA利用Shuffle单元来描述空间和通道维度上的特征依赖关系。然后,对所有子特征进行聚合,并利用“channel shuffle”算子来实现不同子特征之间的信息传递。 SA模块的总体架构包括通道注意分支和空间注意分支。通道注意分支使用全局平均池化(GAP)生成通道的统计信息,并通过参数缩放和移动通道向量进行处理。空间注意分支使用群体范数生成空间的统计信息,并创建一个类似于通道分支的紧凑特征。然后,这两个分支被连接起来,所有子特征被聚合,最后使用“channel shuffle”操作符来实现不同子特征之间的信息传递。 通过实验验证,SA模块在不同深度的网络中展示出良好的效果。在早期阶段,不同类别之间的特征分布相似,表明不同类别可能共享特征组的重要性。而在更深的层次上,不同类别对特征的鉴别价值表现出差异,每个组的激活更具有类别特异性。然而,SA 5_2模块在不同类别上表现出相似的模式,说明它在网络的重新校准方面相对不那么重要。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

学yolo的小白

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值