引入齐次坐标之后我们可以得到直线的表示方式。一条直线上的点满足方程ax+by+c=0。由此,我们可以用一个向量l= [a,b,c]T 来表示一条直线。
判断点在直线上(直线过一点)
对一点 x=[x1,x2,1]T ,使用直线方程可以很简单的判断点是否在直线上。通常使用向量形式,即 x⋅l=0 。
直线的交点
两条直线
l,l′
的交点
x=l×l′
。证明如下:
x⋅l=l×l′⋅l=0
,x在直线
l
上
求解过两点的一条直线
知道两点 x,x′ 可以确定一条直线 l=x×x′ 。证明同上,只需把x与l互换。
对偶性
由上面的讨论可以可以发现,直线与点存在某种对应的关系。事实上,在齐次坐标下,对于任何一条定理,将其中点与直线进行互换,定理依然成立,这叫做直线与点的对偶性。
无穷远点
使用上面直线交点的公式,我们发现我们可以求解平行直线的交点。设两个平行直线 l=[a,b,c]T l′=[a,b,c+d]T
则它们的交点 x=l×l′=[bd,−ad,0]T=[b,−a,0]T
即它们相交与无穷远点x。且方向为向量 [b,−a]T 所指的方向。这也是这两条直线的朝向。顺便, [a,b]T 是直线的法向。这是直线方程的几何意义。
x称为ideal point。引入了无穷远点之后,我们可以说在 IP2 空间两条直线总相交于一点。
无穷处的直线
对于两个无穷远点
x=[a,b,0]T,x′=[c,d,0]T
,我们也可以求出过它们的交线。
显然
l=x×x′=[0,0,ad−bc]T=[0,0,1]T
。
可以看到,l与
x,x′
的具体坐标无关。即所有无穷远点都在一条直线l上。
如何对待无穷远处的情况
射影几何原则上不对无穷远和有限处的情况进行区分,但是实际应用中,有时候分情况讨论反而可以简化问题,在这些情形下,我们把无穷远点看作一种特殊情况。